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Emittance

The emittance of an electron beam is a measure of the area 
occupied by the beam in phase space.

In the absence of coupling and dispersion, the horizontal 
emittance is given by:

𝜀𝑥 = 𝑥2 𝑝𝑥
2 − 𝑥𝑝𝑥

2         (1)

• 𝑥 is the horizontal coordinate with respect to a chosen reference trajectory

• 𝑝𝑥 = 𝛾𝑚 ሶ𝑥/𝑃0 is the horizontal momentum, scaled by a fixed reference momentum, 𝑃0

For 𝑝𝑥 ≪ 1, we find 𝑝𝑥 ≈
𝑑𝑥

𝑑𝑠
, i.e. 𝑝𝑥 is approximately the angle of the particle’s trajectory with respect to the 

reference trajectory
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Emittance

Similarly, the vertical emittance is given by:

𝜀𝑦 = 𝑦2 𝑝𝑦
2 − 𝑦𝑝𝑦

2
        (2)

and the longitudinal emittance is given by:

𝜀𝑧 = 𝑧2 𝛿2 − 𝑧𝛿 2       (3)

• 𝑧 is the longitudinal position of the particle with respect to a reference particle, with 𝑧 > 0 for a particle 
arriving early

• 𝛿 ≈ Δ𝑃/𝑃0 is the relative deviation from the reference momentum, 𝑃0

These definitions can be generalised to include betatron coupling and coupling between longitudinal and 
transverse motion through dispersion.
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Why is emittance a useful concept?

The emittance of a beam of particles remains constant as the distribution moves around a storage ring, as long 
as the following conditions are satisfied:
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• There is no synchrotron radiation

• There are no collective effects

• There are no external damping or 
excitation processes, e.g. stochastic 
cooling

In a lattice with given focussing strength (i.e. 
fixed optics), a smaller emittance leads to a 
smaller beam size and divergence.



Emittance is a key parameter for both synchrotron light sources and colliders

𝑏𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠 =
𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑤𝑒𝑟 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ

𝑝ℎ𝑎𝑠𝑒 𝑠𝑝𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑠𝑜𝑢𝑟𝑐𝑒
    (4)
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Luminosity depends directly on the horizontal and vertical 
emittances

Dynamical effects associated with the collisions mean that 
it is sometimes helpful to increase the horizontal emittance, 
but generally, reducing the vertical emittance as far as 
possible helps to increase the luminosity.

2nd generation

3rd generation

4th generation

e-

e-

e-



Lecture 1 objectives: linear beam dynamics with synchrotron radiation

In this lecture we shall:

• Begin with a reminder of the equations of motion in the absence of synchrotron radiation

• Describe the damping of synchrotron and betatron oscillations by the emission of electromagnetic radiation

• Discuss how quantum excitation leads to equilibrium values for the longitudinal and transverse beam 
emittances

Many of the parameters that characterise synchrotron radiation damping and quantum excitation depend on 
integrals of lattice properties such as local beta-functions, dispersion and dipole bend radius.

As such, it is useful to begin by defining some variables that capture this information.
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The synchrotron radiation integrals

The synchrotron radiation integrals are:

𝐼1 = ׯ
𝜂𝑥

𝜌
𝑑𝑠,            (5)

𝐼2 = ׯ
1

𝜌2 𝑑𝑠,            (6)

𝐼3 = ׯ
1

𝜌3 𝑑𝑠            (7)

𝐼4 = ׯ
𝜂𝑥

𝜌

1

𝜌2 + 2𝑘1 𝑑𝑠           (8)

𝐼5 = ׯ
ℋ𝑥

𝜌3 𝑑𝑠            (9)

Where 𝜂𝑥 is the horizontal dispersion, 𝜌 is the local bending radius, 𝑘1 =
𝑒

𝑃0

𝜕𝐵𝑦

𝜕𝑥
 is the quadrupole strength and the 

chromatic (or dispersion) invariant is defined as:

ℋ𝑥 = 𝛾𝑥𝜂𝑥
2 + 2𝛼𝑥𝜂𝑥𝜂𝑝𝑥 + 𝛽𝑥𝜂𝑝𝑥

2                     (10)
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Radiation damping

Our first goal is to understand how the emission of synchrotron radiation leads to the damping of synchrotron and 
betatron oscillations, starting with synchrotron motion.

We shall proceed as follows:

• We write down the equations of motion for a particle performing synchrotron motion in the absence of 
synchrotron radiation

• We include a term in the equation of motion representing the effect of classical radiation as a ‘frictional’ force

Later we will add a term to the equation of motion representing the effect of photon emission (quantum radiation) as 
stochastic ‘noise’. This adds growth in the amplitude of oscillation, and counters the damping term, eventually 
leading to equilibrium values.
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Synchrotron oscillations without radiation

RF cavities in a storage ring change the energy of particles 
passing through them.

Consider a cavity with peak voltage 𝑉𝑅𝐹  and an angular 
frequency 𝜔𝑅𝐹

A particle passing through the cavity at time 𝑡 = −𝑧/𝑐 with respect to the reference particle sees a voltage:

𝑉 𝑡 = 𝑉𝑅𝐹 sin 𝜙𝑅𝐹 + 𝜔𝑅𝐹𝑡 = 𝑉𝑅𝐹 sin 𝜙𝑅𝐹 −
𝜔𝑅𝐹𝑧

𝑐
         (11)

If 𝑧 is small compared to the RF wavelength 𝜆𝑅𝐹  and taking the convention that 𝜙𝑅𝐹 = 𝜋, the change in 𝛿 is:

Δ𝛿 =
𝑒𝑉𝑅𝐹

𝐸0
sin

𝜔𝑅𝐹𝑧

𝑐
≈

𝑒𝑉𝑅𝐹

𝐸0

𝜔𝑅𝐹𝑧

𝑐
            (12)

t = -z/c
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Synchrotron oscillations without radiation

If the storage ring has circumference 𝐶0, then averaged over many turns, the change of 𝛿 per unit distance is:

𝑑𝛿

𝑑𝑠
≈

𝑒𝑉𝑅𝐹

𝐸0𝐶0

𝜔𝑅𝐹𝑧

𝑐
      (13)

We need to take into account of changes in orbit length from changes in energy deviation:

 𝑑𝑧

𝑑𝑠
= −𝛼𝑐𝛿   (14)

where 𝛼𝑐 is the momentum compaction factor:

                       𝛼𝑐 =
1

𝐶0
ׯ

𝜂𝑥(𝑠)

𝜌(𝑠)
𝑑𝑠 =

𝐼1

𝐶0 
 (15)

𝐼1 is the first synchrotron radiation integral.
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Synchrotron oscillations without radiation

Combining equations (13) and (14):

𝑑𝛿

𝑑𝑠
≈

𝑒𝑉𝑅𝐹

𝐸0𝐶0

𝜔𝑅𝐹𝑧

𝑐
,  𝑑𝑧

𝑑𝑠
= −𝛼𝑐𝛿 

we have the result:

           𝑑2𝛿

𝑑𝑠2 +
𝜔𝑠

2

𝑐2 𝛿 = 0      (16)

Particles perform harmonic oscillations at the synchrotron oscillation frequency, 𝜔𝑠:

𝜔𝑠 =
𝑒𝑉𝑅𝐹𝑐𝛼𝑐𝜔𝑅𝐹

𝐸0𝐶0
      (17)

Note that choosing an RF phase 𝜙𝑅𝐹 = 𝜋 ensures stable oscillations (𝜔𝑠
2 > 0 for 𝛼𝑐 > 0)
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Synchrotron oscillations with classical radiation

Now let us consider the impact of synchrotron radiation.

In a classical (non-quantum) approximation, synchrotron radiation has two effects:

• First, the energy that a particle loses by 
radiation must be replaced by the RF cavities 
(shifting the synchronous phase of the beam 
with respect to the RF phase)

• Second, the amount of energy radiated by a 
particle depends on the energy deviation 
(leading to a damping of its synchrotron 
motion)

We shall consider each of these effects in turn.
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Synchrotron oscillations with classical radiation

First, we consider how much energy is being lost each revolution due to radiation emission.

From classical electromagnetism (e.g. ref. [1]), the power 𝑃𝛾 radiated by a charged particle moving with energy 𝐸 
through a constant magnetic field 𝐵 is given by:

   𝑃𝛾 ≈
𝐶𝛾

2𝜋
𝑐

𝐸4

𝜌2,        where       𝐶𝛾 =
𝑒2

3𝜖0 𝑚𝑐2 4        (18)

For electrons, 𝐶𝛾 ≈ 8.846 × 10−5 m/GeV3, for protons 𝐶𝛾 ≈ 7.783 × 10−18 m/GeV3.

By multiplying the radiation power by the time spent in the dipoles (TB = 2𝜋𝜌/𝑐), we find that the reference 
particle with energy 𝐸0 has an energy loss per turn:

          𝑈0 =
𝐶𝛾

2𝜋
𝐸0

4𝐼2,       where       𝐼2 = ׯ
1

𝜌 𝑠 2 𝑑𝑠    (19)

𝐼2 is the second synchrotron radiation integral.
14



Synchrotron oscillations with classical radiation

The energy lost by particles through synchrotron radiation must be replaced by the RF cavities. This shifts the 
phase at which particles cross the cavities.

The reference particle (losing energy 𝑈0) crosses the RF cavities at the synchronous phase 𝜙𝑠:

       sin 𝜙𝑠 =
𝑈0

𝑒𝑉𝑅𝐹
      (20)

Then, the energy change of a particle (per turn) is in general: 

          Δ𝛿 =
𝑒𝑉𝑅𝐹

𝐸0
sin 𝜙𝑠 −

𝜔𝑅𝐹𝑧

𝑐
−

𝑈

𝐸0
     (21)

 

U0

φs

E=E0

E<E0

E>E0

Negative RF 
slope for αc>0
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Synchrotron oscillations with classical radiation

Equation (18) shows that the radiated power depends on the square of the particle energy (𝐸4/𝜌2 ∝ 𝐸2𝐵2). We can 
write (for 𝛿 ≪ 1)

𝐸2 = 1 + 𝛿 2𝐸0
2 ≈ 1 + 2𝛿 𝐸0

2,      so      𝑈 ≈ 1 + 2𝛿 𝑈0    (22)

Then, including the energy gain from the RF cavities, the rate of change of the energy deviation (13) becomes

𝑑𝛿

𝑑𝑠
=

𝜔𝑠
2

𝛼𝑐𝑐2 𝑧 − 1 + 2𝛿
𝑈0

𝐸0𝐶0
           (23)

Taking the derivative with respect to 𝑠 and substituting 𝑑𝑧/𝑑𝑠 from (14) gives the equation of motion:

𝑑2𝛿

𝑑𝑠2 +
2𝑈0

𝐸0𝐶0

𝑑𝛿

𝑑𝑠
+

𝜔𝑠
2

𝑐2 𝛿 = 0         (24)
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Synchrotron oscillations with classical radiation

The term in d𝛿/𝑑𝑠 means that synchrotron radiation has a damping effect similar to friction in a mechanical 
oscillator.

The equation of motion can be written:

𝑑2𝛿

𝑑𝑠2 +
2

𝑐𝜏𝑧

𝑑𝛿

𝑑𝑠
+

𝜔𝑠
2

𝑐2 𝛿 = 0     (25)

Where the synchrotron oscillation frequency 𝜔𝑠 is now 

𝜔𝑠
2 = −

𝑒𝑉𝑅𝐹

𝐸0
cos 𝜙𝑠

𝜔𝑅𝐹

𝑇0
𝛼𝑐       (26)

𝑇0 ≈ 𝐶0/𝑐 is the revolution period, and the damping time 𝜏𝑧 is

𝜏𝑧 =
2

𝑗𝑧

𝐸0

𝑈0
𝑇0           (27)

𝜏𝑧 is roughly the time it would take the reference particle to lose all its energy, if it lost energy at a constant rate 𝑃𝛾17



Synchrotron oscillations with classical radiation

The longitudinal damping partition number 𝑗𝑧 (typically ~2) takes into account the variation in magnetic field 
associated with any quadrupole component in the dipoles:

𝑗𝑧 = 2 +
𝐼4

𝐼2
            (28)

𝐼2 is defined in (6), and the fourth synchrotron radiation integral 𝐼4 (8) is:

𝐼4 = ׯ
𝜂𝑥

𝜌

1

𝜌2 + 2𝑘1 𝑑𝑠,        𝑘1 =
𝑒

𝑃0

𝜕𝐵𝑦

𝜕𝑥
      (29)

𝜂𝑥 is the horizontal dispersion, 𝜌 is the local radius of curvature of the trajectory, and 𝑘1 is the local quadrupole 
strength.

A negative gradient in the bending magnets will reduce 𝐼4, decreasing 𝑗𝑧 and causing the longitudinal damping time 
to increase (i.e. it reduces the amount of damping in the longitudinal plane).
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Synchrotron oscillations with classical radiation

The longitudinal coordinate 𝑧 obeys an identical equation of motion to the energy deviation 𝛿:

𝑑2𝑧

𝑑𝑠2 +
2

𝑐𝜏𝑧

𝑑𝑧

𝑑𝑠
+

𝜔𝑠
2

𝑐2 𝑧 = 0     (30)

If the synchrotron oscillation period is short compared to the damping time (so that 1

𝜔𝑠
≪ 𝜏𝑧), then the solution to the 

equations of motion can be written:

𝛿 𝑡 = 𝐴𝛿𝑒−𝑡/𝜏𝑧sin(𝜔𝑠𝑡 − 𝜃0)         (31)

𝑧 𝑡 =
𝛼𝑐𝑐

𝜔𝑠
𝐴𝛿𝑒−𝑡/𝜏𝑧cos(𝜔𝑠𝑡 − 𝜃0)         (32)

Where 𝐴𝛿  and 𝜃0 are constants (respectively, the amplitude and phase of the oscillation at time 𝑡 = 0)

19



no damping

With damping

Converges to 
synchronous, on-
energy particle

Head gains 
energy for 
𝛼𝑐 > 0

Tail loses 
energy for 
𝛼𝑐 > 0

Synchrotron oscillations with classical radiation
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Radiation damping of longitudinal emittance

From the definition of the longitudinal emittance:

𝜀𝑧 = 𝑧2 𝛿2 − 𝑧𝛿 2       (33)

We find using (31) and (32) that synchrotron radiation leads to an exponential damping of the longitudinal emittance 
with a damping time that is half the damping time of the synchrotron oscillation amplitude.

𝜀𝑧 𝑡 = 𝜀𝑧 0 exp −2
𝑡

𝜏𝑧
         (34)

It appears that in an electron storage ring, over many damping times the longitudinal emittance will approach zero.

But, as we will see later, the longitudinal emittance approaches a non-zero equilibrium value due to the quantum 
nature of synchrotron radiation …
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Damping of betatron oscillations

Let us now consider the effect of synchrotron radiation on betatron oscillations.

In the case of synchrotron oscillations, we assumed that the synchrotron frequency was small compared to the 
revolution frequency.

But for betatron motion, the oscillation frequency in a storage ring is usually much larger than the revolution 
frequency: we shall have to take a different approach to the analysis.

We shall first consider vertical betatron oscillations: this turns out to be a simpler case than horizontal betatron 
oscillations.

22



Betatron motion without synchrotron radiation

Betatron oscillations can be expressed as harmonic motion:

𝑦 = 2𝛽𝑦𝐽𝑦 cos(𝜙𝑦),            𝑝𝑦 = −
2𝐽𝑦

𝛽𝑦
sin 𝜙𝑦 + 𝛼𝑦 cos 𝜙𝑦    (35)

 

where 𝛽𝑦  is the vertical beta function, 𝜙𝑦  is the betatron phase, and 𝐽𝑦  is the vertical action:

2𝐽𝑦 = 𝛾𝑦𝑦2 + 2𝛼𝑦𝑦𝑝𝑦 + 𝛽𝑦𝑝𝑦
2            (36)

The beam emittance is the average action over all particles:

𝜀𝑦 = 𝐽𝑦              (37)

 Using 𝛽𝑦𝛾𝑦 − 𝛼𝑦
2 = 1, (35), (36) and (37) give (2):

𝜀𝑦 = 𝑦2 𝑝𝑦
2 − 𝑦𝑝𝑦

2
            (38)
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Damping of vertical emittance

In the absence of radiation, the action 𝐽𝑦  of each particle remains constant as the particles move around a storage 
ring.

Radiation damping is a result of particles losing momentum by emitting synchrotron radiation.

This means that each component of the particle momentum changes in the same way. If the radiation carries 
momentum Δ𝑃, then 

Δ𝑝𝑥

𝑝𝑥
=

Δ𝑝𝑦

𝑝𝑦
=

Δ𝑝𝑧

𝑝𝑧
= −

Δ𝑃

𝑃0
              (39)

Synchrotron radiation is emitted in a narrow 
cone (opening angle 1/𝛾) around the direction 
of motion of the particle.  
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Damping of vertical emittance

In the vertical plane, we have:

   Δ𝑝𝑦 = −
Δ𝑃

𝑃0
𝑝𝑦                 (40)

If all particles (at random betatron phases) lose equal momentum Δ𝑃, after substituting (40) into equations (35) and 
(36) and averaging over all phases, we find the expectation value for the change in vertical emittance to be:

Δ𝜀𝑦 = Δ𝐽𝑦 = −𝜀𝑦
Δ𝑃

𝑃0
     (41)
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This change in vertical momentum will result in a change in 
the vertical action 𝐽𝑦, but the amount by which it changes is 
dependent upon the phase space coordinates of the 
particle at the time of emission.



Damping of vertical emittance

If the momentum lost through radiation on each turn is small (compared to the total momentum of each particle), 
then the rate of change of the emittance can be found by averaging the momentum loss around the ring:

𝑑𝜀𝑦

𝑑𝑡
= −

𝜀𝑦

𝑇0
ׯ

𝑑𝑃

𝑃0
≈ −

𝑈0

𝐸0𝑇0
𝜀𝑦 = −

2

𝜏𝑦
𝜀𝑦                  (42)

Here, 𝑇0 is the revolution period, 𝐸0 is the reference energy, 𝑈0 is the energy loss per turn and we have introduced the 
vertical damping time 𝜏𝑦.

The approximation in the above formula is valid for an ultra-relativistic particle, for which 𝐸 ≈ 𝑃𝑐
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Damping of vertical emittance

Similar to the longitudinal emittance (34), the evolution of the vertical emittance is given by 

𝜀𝑦 𝑡 = 𝜀𝑦 0 exp −2
𝑡

𝜏𝑦
        (43)

and the vertical damping time 𝜏𝑦 takes a similar form to the longitudinal damping time (27)

𝜏𝑦 =
2

𝑗𝑦

𝐸0

𝑈0
𝑇0              (44)

The vertical damping partition number in this case is 𝑗𝑦 = 1, whereas for the longitudinal damping partition number 
(28) it is typically 𝑗𝑧 ≈ 2. 

As such, the vertical damping is usually about twice the longitudinal damping time. 

27



Damping of vertical emittance

Typically, in an electron storage ring, the damping time is of the order of tens of milliseconds, while the revolution 
time is of the order of a microsecond. Therefore, radiation effects are indeed ‘slow’ compared to the revolution 
frequency.

Note that we made the assumption that the momentum of the particle was close to the reference momentum, (i.e. 
𝑃 ≈ 𝑃0). If the particle continues to radiate away without any restoration of energy, eventually this assumption will 
no longer be valid …

28

  

 

 

However, the lost energy will be restored by the RF cavities. These are usually 
designed to provide a longitudinal electric field.

There is then no change in the transverse momentum when a particle passes 
through the cavity.

Therefore, we do not have to consider explicitly the effects of RF cavities on 
the emittance of the beam.



Damping of horizontal emittance

Analysis of radiation effects on the vertical emittance was relatively straightforward. 

When we consider the horizontal emittance, there are three complications that we need to address:

29

1) The horizontal motion of a particle is often strongly 
coupled to the longitudinal motion (by dispersion): 
when a particle emits radiation, its horizontal 
coordinate with respect to the closed orbit will change.

2) Where the reference trajectory is curved (usually, in 
dipoles), the path length taken by a particle depends 
on the horizontal coordinate with respect to the 
reference trajectory

3) Dipole magnets are sometimes built with a gradient, so 
that the vertical field seen by a particle in a dipole 
depends on the horizontal coordinate of the particle.

x

before 
emission

after 
emission

Photon with 
energy = 𝑑𝑝

electron 
path

Closed orbit 
in dipole

𝛿 = 0

𝛿0

𝛿0 −
𝑑𝑝

𝑃



Damping of horizontal emittance

Taking all the above effects into account, we can proceed along the same lines as for the analysis of the vertical 
emittance:

1) Write down the changes in coordinate 𝑥 and momentum 𝑝𝑥 resulting from an emission of radiation with 
momentum 𝑑𝑝 (taking into account the additional effects of dispersion)

2) Substitute expressions for the new coordinate and momentum into the expression for the horizontal betatron 
action, to find the change in the action resulting from the radiation emission

3) Average over all particles in the beam, to find the change in the emittance resulting from radiation emission from 
each particle

4) Integrate around the ring (taking into account changes in path length and field strength with 𝑥 in the bends) to 
find the change in emittance over one turn.

The algebra gets somewhat cumbersome and is not especially enlightening. See for example ref. [2] for more details. 
Here, we just quote the result …
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Damping of horizontal emittance

The horizontal emittance decays exponentially:

𝑑𝜀𝑥

𝑑𝑡
= −

2

𝜏𝑥
𝜀𝑥                (45)

where the horizontal damping time is given by:

𝜏𝑥 =
2

𝑗𝑥

𝐸0

𝑈0
𝑇0               (46)

The horizontal damping partition number 𝑗𝑥 is:

𝑗𝑥 = 1 −
𝐼4

𝐼2
             (47)

where the fourth synchrotron radiation integral is given by (8):

𝐼4 = ׯ
𝜂𝑥

𝜌

1

𝜌2 + 2𝑘1 𝑑𝑠 , 𝑘1 =
𝑒

𝑃0

𝜕𝐵𝑦

𝜕𝑥
                  (48)

31



Quantum excitation of longitudinal emittance

The longitudinal emittance is a measure of the average amplitude of synchrotron oscillations of particles in a bunch.

The emission of a photon leads to a ‘jump’ in the amplitude of synchrotron oscillations performed by a particle.

The change in the synchrotron oscillation amplitude from 
the emission of a photon depends on the energy of the 
photon and on the synchrotron phase of the particle at the 
point of emission.

The effect is analogous to a pendulum receiving random 
kicks at random times during its oscillation.
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Quantum excitation of longitudinal emittance

If a particle emits a photon with energy 𝑢𝛾, the change in the energy deviation is 

Δ𝛿 = −
𝑢𝛾

𝐸0
            (49)

Since the rms energy spread in a bunch of particles is given by:

𝜎𝛿
2 = 𝛿2            (50)

and 𝛿 = 0, the change in the rms energy spread when the particles emit a large number of photons is:

Δ𝜎𝛿
2 = 𝛿 + Δ𝛿 2 − 𝛿 2 = Δ𝛿2 =

𝑢𝛾
2

𝐸0
2                      (51)

Photon emission leads to an increase in the rms energy spread, and hence an increase in the longitudinal emittance 
that depends on the rms energy of the emitted photons.
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Quantum excitation of longitudinal emittance

Using knowledge of the photon energy distribution from bending magnet radiation and including the effects of 
radiation damping (see for example refs. [3-5]), it can be shown that the rate of change of the mean square energy 
deviation is:

𝑑𝜎𝛿
2

𝑑𝑡
= 𝐶𝑞𝛾2 2

𝑗𝑧𝜏𝑧

𝐼3

𝐼2
−

2

𝜏𝑧
𝜎𝛿

2      (52)

Where 𝛾 is the relativistic factor for the electrons and the ‘quantum radiation constant’ 𝐶𝑞 is given by:

𝐶𝑞 =
55

32 3

ℏ

𝑚𝑐
   (≈ 3.832 × 10−13 for electrons)         (53)
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Natural energy spread

Quantum excitation gives a steady increase in the mean square energy spread, while damping gives an exponential 
decay.

It follows that there is an equilibrium energy spread for which the quantum excitation is exactly balanced by the 

damping. The equilibrium can be found by setting 
𝑑𝜎𝛿

2

𝑑𝑡
= 0:

𝜎𝛿0
2 = 𝐶𝑞𝛾2 𝐼3

𝑗𝑧𝐼2
                 (54)

This is often referred to as the ‘natural’ energy spread, since collective effects can often lead to an increase in the 
energy spread with increasing bunch charge.

The natural energy spread is determined by the beam energy and by the bending radii and gradient of the dipoles: 
note that it does not depend on the RF parameters (voltage or frequency). 
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Natural bunch length

The equilibrium bunch length 𝜎𝑧 in a distribution with energy spread 𝜎𝛿  is then:

𝜎𝑧 =
𝛼𝑐𝑐

𝜔𝑠
𝜎𝛿             (55)

For a given energy spread, we can reduce the bunch length, either

• By increasing the RF voltage, or

• By increasing the RF frequency

An increase in RF voltage or frequency increases the synchrotron frequency 𝜔𝑠 but does not change the energy 
spread.
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Quantum excitation of horizontal emittance

As in the case of longitudinal motion, if radiation were a purely classical process, the analysis of radiation damping 
effects suggests the horizontal emittance should eventually damp to zero. 

However, radiation is emitted in discrete quanta (photons).

Because of dispersion, the horizontal betatron amplitude of a particle can change when it emits a photon.
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Quantum excitation of horizontal emittance

Photon emission gives random ‘kicks’ to the horizontal motion, just as it does to the synchrotron motion.

The difference is that the horizontal kicks depend on the dispersion in the lattice.

It can be shown that (see for example refs. [3-5]), with radiation damping and quantum excitation, the evolution of 
the emittance is given by:

𝑑𝜀𝑥

𝑑𝑡
= 𝐶𝑞𝛾2 2

𝑗𝑥𝜏𝑥

𝐼5

𝐼2
−

2

𝜏𝑥
𝜀𝑥      (56)

Where 𝐶𝑞 is the quantum radiation constant that we saw earlier (53).

The fifth synchrotron radiation integral 𝐼5 is given by:

𝐼5 = ׯ
ℋ

𝜌3 𝑑𝑠,        where        ℋ𝑥 = 𝛾𝑥𝜂𝑥
2 + 2𝛼𝑥𝜂𝑥𝜂𝑝𝑥 + 𝛽𝑥𝜂𝑝𝑥

2                (57)
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Equilibrium horizontal emittance

Using (56) we see that there is an equilibrium horizontal emittance 𝜀0, for which that damping an excitation rates are 
equal:

𝑑𝜀𝑥

𝑑𝑡
= 0   when    𝜀𝑥 = 𝜀0 = 𝐶𝑞𝛾2 𝐼5

𝑗𝑥𝐼2
                 (58)

Note that 𝜀0 is determined by the square of the beam energy, the lattice functions (beta and dispersion) in the 
dipoles, and the bend radius and gradient of the dipoles.

𝜀0 is sometimes called the ‘natural emittance’ of the lattice, since it includes only the most fundamental effects that 
contribute to the emittance: radiation damping and quantum excitation (collective effects are neglected).

Typically, third generation synchrotron light sources have natural emittances of the order of a few nanometres and 
the latest fourth generation of rings are reaching values below 100 picometres. With beta functions of a few metres, 
this implies horizontal beam sizes in the range of tens of microns.
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Quantum excitation of vertical emittance

Finally, let us consider the quantum excitation of vertical emittance.

In principle, we can apply the formulae that we derived for the quantum excitation of the horizontal emittance, 
making the appropriate substitutions of vertical quantities for the horizontal ones.

In many storage rings however, the vertical dispersion in the absence of alignment, steering and coupling errors is 
zero, so ℋ𝑦 = 0.

However, the equilibrium vertical emittance is larger than zero, because the vertical opening angle of the radiation 
excites some vertical betatron oscillations.
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Quantum excitation of vertical emittance

The fundamental lower limit on the vertical emittance, from the opening angle of the synchrotron radiation, is given 
by (see ref. [6]):

ℰ𝑦 =
13

55
𝐶𝑞

1

𝑗𝑦𝐼2
ׯ

𝛽𝑦

𝜌3 𝑑𝑠                     (59)

Note that, unlikely the horizontal emittance, the natural vertical emittance does not scale with beam energy.

In most storage rings the natural vertical emittance is an extremely small value, typically 3-4 orders of magnitude 
smaller than the horizontal emittance.

In practice, the actual vertical emittance is dominated by magnet alignment errors or deliberately-introduced 
betatron coupling and vertical dispersion. Storage rings typically operate with a vertical emittance that is of the 
order 0.1-1% of the horizontal emittance, but many can achieve emittance ratios somewhat smaller than this.
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Summary (1): synchrotron radiation damping

The energy loss per turn is given by:

𝑈0 =
𝐶𝛾

2𝜋
𝐸0

4𝐼2,            𝐶𝛾 ≈ 8.846 × 10−5m/GeV3          (60)

The emittances (𝜀𝑥, 𝜀𝑦  and 𝜀𝑧) damp exponentially:

𝜀 𝑡 = 𝜀 0 exp −2
𝑡

𝜏
     (61)

The radiation damping times are:

𝜏𝑥 =
2

𝑗𝑥

𝐸0

𝑈0
𝑇0,              𝜏𝑦 =

2

𝑗𝑦

𝐸0

𝑈0
𝑇0,              𝜏𝑧 =

2

𝑗𝑧

𝐸0

𝑈0
𝑇0             (62)

The damping partition numbers are (Robinson theorem: 𝑗𝑥 + 𝑗𝑦 + 𝑗𝑧 = 4):

𝑗𝑥 = 1 −
𝐼4

𝐼2
,                𝑗𝑦 = 1,                𝑗𝑧 = 2 +

𝐼4

𝐼2
                          (63)
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Summary (2): beam dynamics with synchrotron radiation

Including the effects of radiation damping and quantum excitation, the emittances vary as:

𝜀 𝑡 = 𝜀 0 exp −2
𝑡

𝜏
+ 𝜀 ∞ 1 − exp −2

𝑡

𝜏
         (64)

The natural emittance is:

𝜀0 = 𝐶𝑞𝛾2 𝐼5

𝑗𝑥𝐼2
,          𝐶𝑞 = 3.832 × 10−13m                     (65)

The natural energy spread and bunch length are given by:

𝜎𝛿
2 = 𝐶𝑞𝛾2 𝐼3

𝑗𝑧𝐼2
 ,          𝜎𝑧 =

𝛼𝑐𝑐

𝜔𝑠
𝜎𝛿              (66)

The synchrotron frequency and synchronous phase are given by:

𝜔𝑠
2 = −

𝑒𝑉𝑅𝐹

𝐸0
cos 𝜙𝑠

𝜔𝑅𝐹

𝑇0
𝛼𝑐,           sin 𝜙𝑠 =

𝑈0

𝑒𝑉𝑅𝐹
         (67)
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Summary (3): synchrotron radiation integrals

The synchrotron radiation integrals are:

𝐼1 = ׯ
𝜂𝑥

𝜌
𝑑𝑠,            (68)

𝐼2 = ׯ
1

𝜌2 𝑑𝑠,            (69)

𝐼3 = ׯ
1

𝜌3 𝑑𝑠            (70)

𝐼4 = ׯ
𝜂𝑥

𝜌

1

𝜌2 + 2𝑘1 𝑑𝑠           (71)

𝐼5 = ׯ
ℋ𝑥

𝜌
𝑑𝑠            (72)

The chromatic (or dispersion) invariant is:

ℋ𝑥 = 𝛾𝑥𝜂𝑥
2 + 2𝛼𝑥𝜂𝑥𝜂𝑝𝑥 + 𝛽𝑥𝜂𝑝𝑥

2        (73)
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