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Beam instabilities

● Beams tend to self-destruct via self-amplified oscillations

Feedback onFeedback off

→ Landau damping is (almost) always needed to obtain 
good quality beams 
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Content

● Part I (concept)

– Wave – particle interaction

– Decoherence

– Landau damping using Van Kampen approach

– Stability diagram and beam transfer function

● Part II (applications)

– Longitudinal and transverse Landau damping in unbunched and 
bunched beams

– Non-linear collective forces

– Advanced Landau damping techniques
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Interaction of particle with the collective force

● Surfers catch the wave when they have a similar velocity

● Particles can exchange energy with a wave when they have a similar 
velocity
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Damping of collective motion

● The wave is damped when it loses 
more energy than it gains from 
particles → Landau damping

Gain energy from the wave

Lose energy to the wave

● The wave is amplified when the wave 
lose more energy than it gains from 
particles → Landau anti-damping

Particle velocity 
distribution

Wave velocity

● Landau damping is collisionless process !

The interaction between the particles and the wave occures only via the collective 
force (e.g. electromagnetic fields)

[WikiLandau,
WikiTwoStream]
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Damping of collective motion
A little subtlety for accelerators

● Landau damping prevents instabilities to happens
‘If a small perturbation occurs, it is immediately damped preventing its 
self-amplification’ → No energy exchange

● When an external force drives the collective motion, the energy input is 
absorbed by the particles via Landau damping

● In accelerators we refer to this effect as decoherence or filamentation

→ The main difference with Landau damping is the corresponding 
emittance growth

[Distribution]
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Decoherence in beams

● The velocity spread is usually small in particle beams → an analogous effect 
occurs thanks to the tune spread

Linear force
→ Fixed oscillation frequency

Non linear force
 →Amplitude dependent frequency / detuning

[Sextupole, 
Octupole]
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Perturbation without decoherence

Turn 1

● Without tune spread, the initial perturbation remains as an oscillation 

Turn 9000
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Decoherence
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expense of a change of distribution → emittance growth
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Liouville theorem for Hamiltonian systems

● Even with distorted trajectories,the 
phase-space density is preserved:
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Liouville theorem: A simple illustration

● The conservation of the emittance is a consequence of Liouville theorem

– Liouville is more general: The phase-space density is conserved even in 
the presence of non-linear forces, provided that the system can be 
described with Hamilton’s equation

→Non-conservative forces such as intrabeam scattering or the emission 
of synchrotron radiation cannot be described with Hamilton’s equation: 
Liouville theorem does not apply

Focusing quad.
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Vlasov equation for particle beams

● Vlasov equation can be derived from Liouville theorem. It is a special case for 
plasmas (i.e. charged particles interacting ‘long-range’ via electromagnetic fields)

→ Very similar to particle beams! We can write:

Degree of freedom

Hamiltonian

Coordinate (e.g. x)

Conjugate coordinate (e.g. p
x
)
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Vlasov equation for particle beams

● Let’s consider a single degree of freedom and use action angle variables:

Revolution 
frequency

Tune

Linear detuning coefficient

→ Hamiltonian of a harmonic oscillator with 
 a ‘simple’ non-linear force

Example of solution: Exponential 
distribution in action (Gaussian in x, px) :

[Ruggiero]
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Perturbation theory with an external force

● Let's consider a first order perturbation of the distribution:

● And a first order perturbation of the 
Hamiltonian by an external force:

● Let’s consider an external force: 

● First order perturbation of Vlasov equation:

[Ruggiero]
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Van Kampen approach for beams
● There are various approach to solving the first order perturbation of 

Vlasov equation

– Landau approach based on complex calculus and Laplace transforms

– Van Kampen approach based on distributions instead of functions

→ It’s ok since eventually we are only interested in integrals of these 
distributions (e.g. to compute the average beam position)

Coherent mode Incoherent modes

● The dispersion relation links the coherent 
mode frequency with the frequency shift due 
to the collective force via the tune spread

[VanKampen]
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The stability diagram

● Using a Gaussian distribution and linear detuning, we can write the 
dispersion relation:

If the tune shift due to the 
collective force is inside 
of the stability diagram

The beam is stable

If the tune shift due to the 
collective force is outside 
of the stability diagram

The beam is unstable

● The stability diagram is a very common way of representing Landau damping 
when the impact of the collective force can be represented by a complex tune shift

[Ruggiero]
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Forced beam oscillations

● We look for harmonic solutions 
resonant with the excitation:

● The beam oscillation amplitude normalised to the excitation amplitude is called 
the beam transfer function → A measurable quantity that directly relates to 
the stability diagram

[Ruggiero]
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Beam transfer function measurement [Tambasco]

Transfer function of the 
driven damped oscillator

Measurement at LHC
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Beam transfer function and stability diagram [Tambasco]

Measurement at LHC

● The BTF is an interesting way to quantify experimentally Landau damping
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Recap

● Landau damping stems from the interaction of single particles with 
waves

– A necessary condition for Landau damping is the a comparable velocity / 
frequency of the wave and the particles motion

● While collective forces such as wake fields or electron clouds tend to 
generate unstable modes of oscillation, Landau damping stabilises them 
without emittance growth

– An external perturbation may also decay through a similar phenomenon, 
we rather talk about decoherence or filamentation. This mechanism 
leads to emittance growth

● Landau damping originates in the spread of oscillation frequencies of the 
particles in the beam

– It is a linear mechanism, as in plasmas. However in accelerators the 
frequency spread often originates from non-linear forces
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● Ok, in the second part we’ll address practical applications...

“Now what ?”
– Fuego,a down-to-earth rabbit
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