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 Last time
 Discussed the advantages of the muon collider
 Discussed luminosity drivers
 Presented issues surrounding muon capture
 Described ionisation cooling – physics

 This time
 Describe implementation of ionisation cooling
 Talk about the acceleration
 Talk about collision
 Discuss the path to the muon collider – how to make it happen

Recap
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 To realise ionisation cooling:
 Need to focus strongly in transverse space

 Both horizontal and vertical focusing to cool in both planes
 Need to maintain sufficient transverse acceptance
 Need to reaccelerate to keep cooling quick
 Need to focus strongly in longitudinal space 

 Short bunch → bigger energy spread
 Reduce the relative effect of the heating

 Solenoids
 Initially weaker, for more acceptance
 Finally strong → strongest(!) for more focusing

 Lots of RF
 Maintain both bunching and reacceleration

How to realise cooling?
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Muon Cooling

4D Final 
cooling

Rectilinear
cooling

Stratakis et al, PRSTAB 18, 2015
Zhu et al, arxiv 2409.02613

Sayed et al, PRSTAB 18, 2015
Fol et al, IPAC22 



  

 Solenoids behave as a focusing system
 Fringe field generates kinetic angular momentum
 Angular momentum → focusing
 Assuming cylindrical symmetry

Solenoid optics

G. Penn, Beam Envelope Equations for Cooling of Muons in Solenoid Fields, PRL 85, 2000



  

Rectilinear Cooling

 6D Cooling
 Combined function dipole-solenoid magnets

 Weak dipole field is a perturbation
 Focus at the asborber with alternating solenoid polarity

 Compact lattice – RF integrated into magnet cryostat
 Lithium Hydride or lH2 absorbers
 Careful field shaping to control position of stop-bands

D. Stratakis and R. Palmer, Rectilinear six-dimensional ionization cooling channel for a muon collider: A theoretical and numerical 
study, Phys. Rev. ST Accel. Beams 18, 2015



  

 Pass Band A
 Less focusing
 Better acceptance

 Pass Band B
 More focusing
 Worse acceptance

Pass bands

1/κ [AU]

φ=πφ=2π



  

 As the beam nears equilibrium emittance cooling slows
 New lattice, shorter and stronger fields

 Smaller DA
 More focusing

 Repeat until the limit on magnet is reached (β~ few cm)
 Physical limits of solenoid construction

Rectilinear cooling performance
Pass Band A Pass Band B
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Final cooling

 Challenge is to get very tight focussing
 Go to high fields (~30 T) and lower momenta

 Causes longitudinal emittance growth
 Chromatic aberrations introduce challenges

 Elaborate phase rotation required to keep energy spread small
 Move to low RF frequency to manage time spread

H. Sayed et al., High field – low energy muon ionization cooling channel, Phys. Rev. ST Accel. Beams 18, 2015
Fol et al, IPAC22 
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Final cooling
 In uniform field

0 0

 Reach β~ 1 cm – but not practical to introduce dispersion
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Final cooling - absorber

 Significant benefit to use Hydrogen absorber
 Much less energy loss per scatter

 Narrow, intense beam is enough to boil H2
 Next to very thin windows

 Can cause damage to windows → burst
 Requires care!

B. Stechauner, Muon Collider Annual Meeting 2022
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Final cooling - performance

 β~ cm
 Significant longitudinal emittance growth
 Transmission losses
 Final transverse emittance <~ 50 micron
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Luminosity formula

 We have taken a beam that is ~ 100 mm wide and made a 
beam that is ~ few mm wide

 Need to accelerate it on a short time scale << muon lifetime
 Time dilation is on our side!

 Need to bring it to collision
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 During acceleration, muon lifetime is constantly increasing due 
to Lorentz time dilation. 

 Starting from time dilated radioactive decay:

Acceleration efficiency

Change in γ in muon lifetime:

 Chain rule:

 Integrate
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 Chaining multiple acceleration stages

Acceleration efficiency

 Seek to accelerate from 0.2 GeV to 5e3 GeV
 Ef/Ei=2.5e4
 Average gradient ~ 10 MV/m → 84 % survival rate
 Average gradient ~ 1 MV/m → 19 % survival rate
 Compare with ILC → 11 km @ 250 GeV → 23 MV/m

 But we don’t want to use a linac all the way!
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 At low energy (up to ~ few GeV) linac is cost effective
 Non-relativistic → RF synchronisation is slow, expensive in a ring
 Not much linac makes large Ef/Ei

Linac to start

Kurup et al, The Muon Linac for the International Design Study for the Neutrino Factory, Proc. IPAC11
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 At higher energy can recirculate through the linac
 Less focusing required → geometric emittance
 Real estate gradient in the linac is higher

 Can’t ramp magnets quickly enough
 Use recirculators to bring the beam back into the linac
 Worry about mis-focusing in the linac
 Worry about time of flight in the return arcs & phasing RF correctly
 “ERL-like”

Recirculating Linac

Bogacz, Muon Acceleration Concepts for NuMax, JINST 13 (2018)
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 At highest energy, can use synchrotrons
 Ramp magnets in synchronisation with increasing beam energy
 Need extremely fast ramp < few ms
 To keep ring compact, use combination of

 Fixed superconducting and 
 Pulsed normal conducting magnets

 Shielding components from decay losses

Pulsed Synchrotrons
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 For cost/efficiency, magnets must ramp on a resonant circuit
 Use sum of two harmonics to make a pseudo-linear ramp
 Synchronous phase of RF cavities adjusts to accelerate beam

Synchronisation

F. Batsch, Muon Collider workshop 2022
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 Alternative to get fast acceleration – use Fixed Field Accelerators
 Beam moves across aperture of combined function magnets
 Sample stronger dipole fields at higher momenta
 Either: move fast enough that optical resonances are not a problem
 Or: add in sextupole+ to correct chromaticity

 (There exists a “scaling FFA” field that perfectly corrects chromaticity)

Alternative - FFAs
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MC Accelerator/Collider Ring

 We’ve seen how to get very rapid acceleration
 Now look at the collider ring

 High field → short ring → many collisions
 Tight focusing at IP
 Hourglass effect → Short bunch
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Chromaticity Correction

 Short bunch → large momentum spread ~ 1e-3
 Off-momentum particles are not focused correctly

 Chromaticity correction
 Sextupoles very close to interaction point
 Sextupole focusing strength varies with transverse position
 Introduce correlation between momentum and position

 Dispersion
 Correct the mis-focusing of the quadrupoles
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Short bunch
 Bunch length maintained by RF
 Driven by Momentum Compaction Factor

 Path length (time-of-flight) variation with energy

 Introduce section of ring having tunable dispersion to enable 
control of αp 
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Muon Collider Detector

 Muon collider 
 Rather standard detector arrangement
 Based on e+e- detector
 Shielding masks is crucial component to block decay products

Shielding nozzles

Tracking

EM Calorimeter

Hadronic Calorimeter
SC Solenoid
Muon Detectors
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BIB Characteristics

 Beam induced background (BIB) arising due to muon decays
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Neutrino beams – blessing and curse
 Muon decays yield high intensity neutrino beams

 Neutrino beam from IP straight O(1) metre across
 Significant fraction of the muons in the collider ring decay here

 Can be used for experiments
 Create very weak neutron shower where they emerge
 Must stay below off-site limits for neutron flux over 1 year average
 Must apply ALARP (As Low As Reasonably Possible) principle

 Either (likely all 3)
 Periodically move beam elements
 Add small deviations to the beam in the beam pipe
 Use land near surface for neutrino experiments

 Expect to be able to mitigate to negligible level
 i.e. consistent with existing facilities
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Neutrino beams

 Huge neutrino flux many orders of magnitude greater than 
other experiments 
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Muon Accelerator R&D
 MERIT

 Demonstrated principles of muon 
accelerator proton targetry/pion production

 EMMA
 Demonstrated fast acceleration in FFAGs

 CBETA
 Demonstrated RLAs using FFA arcs

 MUCOOL
 Cavity R&D for ionisation cooling
 Demonstrated operation of cavities at high 

voltage in magnetic field
 Breakdown suppression using high pressure 

gas
 Careful RF coupler design and cleaning in 

vacuum
 MICE

 Ionisation cooling demonstration
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EMMA
 EMMA demonstrated rapid acceleration of 

electrons at ~ MeV energy
 Prove “non-scaling” FFA principle
 Scales to muons at ~ GeV scale

 Non-scaling FFA
 Accelerate rapidly through resonances
 Normally the beam would be destroyed
 If resonance is weak and acceleration fast 

beam can survive
 Need a beam test to be convinced

 Electron model
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EMMA
 Beam moves across aperture 

during acceleration
 Tune reduces

 Crossing resonances
 Beam size stays ~ same
 Non-scaling FFA principle works 
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CBETA

 Energy Recovery Linac that used single FFA arc – 5 turns:
 Beam goes through linac
 Time delay line
 FFA arc – same ring for all different energies
 Back into RF

 Beam is subsequently decelerated in a further 5 turns

Bartnik et al, CBETA: First Multipass Superconducting 
Linear Accelerator with Energy Recovery, PRL 125, 2020
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Muon Ionisation Cooling Experiment 
(MICE)
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Superconducting Magnets

 Spectrometer solenoids upstream and downstream
 400 mm diameter bore, 5 coil assembly
 Provide uniform 2-4 T solenoid field for detector systems
 Match coils enable choice of beam focus

 Focus coil module provides final focus on absorber
 Dual coil assembly - possible to flip polarity
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Absorber

 65 mm thick lithium hydride absorber
 350 mm thick liquid hydrogen absorber 

 Contained in two pairs of 150-180 micron thick Al windows
 45o polythene wedge absorber for longitudinal emittance 

studies
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MICE
 Muon ionisation cooling has been 

demonstrated by MICE
 Muons @ ~140 MeV/c
 Transverse cooling only
 No re-acceleration
 No intensity effects
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Making the Muon Collider Real

 Proton and electron accelerators have a century of operations
 How can we make a muon collider real?

 Prototyping of key technology
 Physics facilities using key technology
 Staging
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nuSTORM

 Neutrinos from stored muons
 Create ~ GeV pions using conventional pion target
 Bring the pions to a storage ring
 Pions decay to muons which are in momentum acceptance of ring

 Pions are lost
 Muons are stored

 Decay to neutrinos

nuSTORM at CERN – Feasibility Study, Ahdida et al, CERN-PBC-REPORT-2019-003, 2020

Pion beam dump/muon test area
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Survey of Muon Beamlines
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Mu2e
V. Pashikin, Mu2e collaboration

 Mu2e → search for rare muon decay
 Use muons produced by pions on 

target in solenoid field
 ~10s kW
 ~few T
 Scaled down version of MuC target
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Cooling Demonstrator

 Build on MICE
 Longitudinal and transverse cooling
 Re-acceleration
 Chaining together multiple cells
 Routine operation
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Cooling Demonstrator
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Cooling Demonstrator

Beam
dump

 Potential CERN implementation
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Cooling Demonstrator

 Potential Fermilab implementation
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Staging

 Introduce a staged approach to MuC
 Prototypes (Present day)
 Neutrino sources
 Muon-based Higgs factory
 3 TeV muon collider
 10 TeV muon collider

 Each stage within reasonable budget, on reasonable time scale

Neutrino 
source



  

Summary

C. T. Rogers
Rutherford Appleton Laboratory



  51

Summary

 We’ve looked at the major components of the muon collider
 Proton driver
 Muon production and capture
 Ionisation cooling
 Acceleration
 Collision

 We’ve looked at the steps that have been made, and 
continue to be brought to bear, to make it happen

 Technology demonstrators
 Physics facilities
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Final Word

 The muon collider has the potential to explore physics reach 
at the highest energies

 Fraction of the footprint of comparable facilities
 Expectation of much lower power requirements
 Advance particle physics by ~ decades

 Many technical challenges
 All are manageable with current or near-to-current technologies

 This is your accelerator
 The technology is for you to invent
 The technology is for you to demonstrate
 Muon collider will be a defining technology for your generation

The muons are calling
And we must go
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MC Accelerator/Collider Ring

 FFA concept
 Fixed field accelerator using vertical orbit excursion

 Constant path length at different energy
 “Relativistic cyclotron”

 Enables fixed frequency acceleration
 Removes the limit on minimum bunch length
 No need to ramp magnets
 Challenge: Wide aperture RF cavities

Beam goes up
During
Acceleration
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