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Jele) Content of I

BNon-linear effects and their impact

BReminder of Lagrangian and
Hamiltonian formalism, canonical
transformation, and symplecticity

BThe relativistic Hamiltonian for E/M
fields

BCanonical perturbation theory and its
limitations
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@
‘d e @ Non-linear effects

B Non-linear magnets, such as
chromaticity sextupoles
(especially in low emittance
rings), octupoles,...

B Magnet imperfections and
misalignments

B Insertion devices (wigglers,
undulators) for synchrotron
radiation storage rings

Magnet fringe fields
(especially in high-intensity
rings)

Power supply ripple
Ground motion (for e+/e-)
Electron (Ion) cloud

Beam-beam effect (for
colliders)

Space-charge effect (especially
in high-intensity ring)
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de'e Non-linear effects affe

B Non-linear magnets, suchas B Performance impact
chromaticity sextupoles 0 Reduced injection efficiency

2

0 Particle losses causing

(especially in low emittance
rings), octupoles,...

B Reduced intensity and beam
lifetime

- Ma gne t 1mperfect10ns and B Radio-activation (e?uipment
mlsallgnments maintenance and lifetime)
B Insertion devices (wigglers, W Super-conducting magnet quench
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undulators) for synchrotron
radiation storage rings

Magnet fringe fields
(especially in high-intensity
rings)

Power supply ripple
Ground motion (for e+/e-)
Electron (Ion) cloud

Beam-beam effect (for
colliders)

Space-charge effect (especially

in high-intensity rings)

B Reduced machine availability
Emittance increase

Reduced number of bunches,
increased crossing angle, atfecting
luminosity (for colliders)

Allow to damp instabilities (see
lecture on “Landau damping”)

Can be used for beam extraction



de'e ...but also cc

B Non-linear magnets, suchas B Performance impact

2
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chromaticity sextupoles
(especially in low emittance
rings), octupoles,...

Magnet imperfections and
misalignments

Insertion devices (wigglers,
undulators) for synchrotron
radiation storage rings

Magnet fringe fields
(especially in high-intensity
rings)

Power supply ripple
Ground motion (for e+/e-)
Electron (Ion) cloud

Beam-beam effect (for
colliders)

Space-charge effect (especially

in high-intensity rings)

Reduced injection efficiency

Particle losses causing

B Reduced intensity and beam
lifetime

B Radio-activation (e(tluipment
maintenance and lifetime)

B Super-conducting magnet quench
B Reduced machine availability
Emittance increase

Reduced number of bunches,
increased crossing angle, affecting
luminosity (for colliders)

Allow to damp instabilities (see
lecture on “Landau damping”)

Can be used for beam extraction

B Cost issues

Magnet field quality, alignment
tolerances

Number of magnet corrector,
power convertor families and
specifications

Design of collimation system
Operational efficiency (energy)
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Reminder of
Hamiltonian formalism
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2

J The Hamiltonian of the system is defined as the Legendre
transformation of the Lagrangian

i oL
o

where the generalised momenta are P; =

10



Jele, Hamiltonian for &

J The Hamiltonian of the system is defined as the Legendre
transformation of the Lagrangian L =1 —V

' OL
04
U The generalised velocities can be expressed as a function of

the generalised momenta if the previous equation is
invertible, and thereby define the Hamiltonian of the system

where the generalised momenta are P; =
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Jole, Hamiltonian &

J The Hamiltonian of the system is defined as the Legendre
transformation of the Lagrangian L =1 —V

' OL
04
J The generalised velocities can be expressed as a function of

the generalised momenta if the previous equation is
invertible, and thereby define the Hamiltonian of the system

where the generalised momenta are P; =

: 1
0 Example: consider  1,(q, ¢) = 5 > mi@; = Vi, an)

i oL
d From this, the momentum can be determined as p: = 9a: = mq;

which can be trivially inverted to provide the Hamiltonian

2
Z D;

1
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Jeole, Hamilton’s eq

dThe equations of motion can be derived
from the Hamiltonian following the
variational principle of “stationary” action
but also by simply taking the differential of
the Hamiltonian (see appendix)

2

,._5’H . 0OH 5_L_ OH
qz_@pi’ Pi = dq ot Ot

dynamics, CERN Accelerator School, November 2024

n-linear

No

13



Jole, Hamilton’s

JThe equations of motion can be derived
from the Hamiltonian following the
variational principle of “stationary” action
but also by simply taking the differential of
the Hamiltonian (see appendix)

2

OH . 0H 0L  0H
Op; b= Og = ot 0Ot

qi =

dThese are indeed 2n + 2 equations describing
the motion in the “extended” phase space

(Q17 e lnyP1y .- 7pn7t7 _H)
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(I»\') Properties of Ha

d The variables (¢1,---,n:p1,- -, ¢, —H) are called
canonically conjugate (or canonical) and define the
evolution of the system in phase space

4 These variables have the special property that they
preserve volume in phase space, i.e. satisfy the
well-known Liouville’s theorem

JThe variables used in the Lagrangian do not
necessarily have this property
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(‘:\q Properties of

d The variables (g1, .-, ¢n:p1,--.,pn,t, —H) are called
canonically conjugate (or canonical) and define the
evolution of the system in phase space

4 These variables have the special property that they
preserve volume in phase space, i.e. satisfy the
well-known Liouville’s theorem

JThe variables used in the Lagrangian do not
necessarily have this property

JdHamilton’s equations can be written in vector form
Z — J y VH(Z) with Z = (Q17'°°7Qn7p17°'°7pn)
and V = (@QM ceey 6@117 8p17 I 70pn)

QThe 2n X 2n matrix J — ( ‘i ;) is called the
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Jele Poisson brack

dCrucial step in study of Hamiltonian systems is
identification of integrals of motion

2

J Consider a time dependent function of phase
space. Its time evolution is given by

d <~ (dg; Of dp; Of af
g Pt = ; ( dt og;  di 5’p7;> T

—~ (OH 0f OH 9f of af
B Z (029@ dq;  Og 8192-) = A fl+

where |H, f]| is the Poisson bracket of f with [
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Jo'e, Poisson br

dCrucial step in study of Hamiltonian systems is
identification of integrals of motion

J Consider a time dependent function of phase
space. Its time evolution is given by
d N~ (d4: 0f  dp; Of\  Of
g (Pt = ; ( it 0g | dt 3pi> 4T

" (OH Of OH Of f Of
_Z<8p26% 3q7;3p7;)+0t H 71+ 5y

ot

where |H, f| is the Poisson bracket of f with

: UIf a quantity is explicitly time-independent and its
Poisson bracket with the Hamiltonian vanishes (i.e.
commutes with the f{), it is a constant (or integral)
of motion (as an autonomous Hamiltonian itself)

Non-linear dynamics, CERN Accelerator School, November 2024



‘ °
COORXEes! brackets

JFrom the definition, and for any three given
functions, the following properties can be shown

2

laf 4+ bg, h] = a|f,h] + blg,h] ,a,b € R bilinearity

f, gl = —lg, f] anticommutativity
i lg, ] + 1g, b, f]] + [, |f, g]] = O Jacobi’s identity
fyghl = f,glh+ glf, I Leibniz’s rule

JPoisson brackets operation satisfies a Lie algebra

dynamics, CERN Accelerator School, November 2024
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Canonical
transformations
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2

variable (4, P)to (Q,P), so system becomes simpler to study

4 Find a function for transforming the Hamiltonian from

d Transformation should be canonical (or symplectic), so that
Hamiltonian properties (phase-space volume) are preserved

21



2

variable (4, p) to (Q,P), so system becomes simpler to study

. °

4 Find a function for transforming the Hamiltonian from

d Transformation should be canonical (or symplectic), so that
Hamiltonian properties (phase-space volume) are preserved

d These “mixed variable” generating functions are derived by

0F} 0F} 0F3 0F3
F - Pi — =, Pi:— F y g, = — ,Pi:—
B8R, | 0F 0F, _ OF,
F2(q7P) - Pi — aqz ’ Qz — 8PZ F4(p7P) - g — 8pz ’ Q’L — 8PZ
d A general non-autonomous Hamiltonian is transformed to

OF;
H(Q7P7t) :H<q7p7t)+8—tj7 ]: 1727374
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2

variable (4, p) to (Q,P), so system becomes simpler to study

‘ °

4 Find a function for transforming the Hamiltonian from

d Transformation should be canonical (or symplectic), so that
Hamiltonian properties (phase-space volume) are preserved

d These “mixed variable” generating functions are derived by

OF} OF} 0F3 0F3
F - Pi — 9 PZ — F: ’ -4y — — ) Pz —
(a4, Q) :p 90, 90, 5(Q,P) : g . 0.
8F2 8F2 8F4 aFél
F P):p, = = F P): g — — _
d A general non-autonomous Hamiltonian is transformed to
H(Q,P,t) = H(q,p.,t) + % C j=1,2,3,4

d One generating function can be constructed by the other
through Legendre transformations, e.g.

FZ(qap):Fl(an)_Qpa F3(Q7p):F1(q7Q)_qp7
with the inner product define as a-p =) _aip:

Non-linear dynamics, CERN Accelerator School, November 2024

23



Non-linear dynamics, CERN Accelerator School, November 2024

2

J A fundamental property of canonical transformations is the
preservation of phase space volume

J This volume preservation in phase space can be represented
in the old and new variables as



(Q') Preservation of P

2

Q A fundamental property of canonical transformations is the
preservation of phase space volume

 This volume preservation in phase space can be represented
in the old and new variables as

/ﬁdpidqi :/ﬁdpisz‘
i=1 i=1

J The volume eler_nent in old and n_ew variables are related
through the ]acobian

O(Pr,....,Py.Q1,...,Qn
Hdpquz— ]_7 Y Q]. Q HdeQ,L
OP1;- 3Py Qs -5 Gn) -5
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2

Q A fundamental property of canonical transformations is the
preservation of phase space volume

de’e, Preservation of

 This volume preservation in phase space can be represented
in the old and new variables as

/ﬁdpid%; :/ﬁdPiin
i=1 i=1

J The volume eler_nent in old and n_ew variables are related
through the ]acobian

Py, ..., Py, Q1. O
Hdp,&dq,&— ]_7 Y Q]. Q HdeQZ
(p17°'°7pn7Q17°"7qn i—1

Jd These two relationships imply that the Jacobian of a
canonical transformation should have determinant equal to
1

O(Pi,...,Py,Q1,...,Qn)
a(plv"' 7pn7Q17'°°7qn)

Non-linear dynamics, CERN Accelerator School, November 2024
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The Accelerator ring
Hamiltonian
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2
H(x,p,t) = C\/(p — SA(x, t))2 + m?c? 4+ e®P(x,t)

[ Itis generally a 3 degrees of freedom one plus time (i.e., 4
degrees of freedom)

®
d e @ Single-particle relativistic He

eeeeeeeeeeeeeeeeeeeeeeee

d The Hamiltonian represents the total energy

H=F =~vmc*+ed

Non-linear dynamics, CERN Accelerator School, November 2024

28



2
H(x,p,t) = \/(p — SA(x, t)) + m?c? 4+ e®P(x,t)

[ Itis generally a 3 degrees of freedom one plus time (i.e., 4
degrees of freedom)

Cm Single-particle relativist

d The Hamiltonian represents the total energy
H=F =~vmc*+ed
d The total kinetic momentum is
H2 1/2
P = ( > m202>
C
d Using Hamilton's equations

(x,p) = [(x,p), H]

it can be shown that motion is governed by Lorentz equations

Non-linear dynamics, CERN Accelerator School, November 2024
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m Canonical transformations and

Summary of canonical transformations and
approximations for simplifying Hamiltonian
- From Cartesian to Frenet-Serret (rotating)

coordinate system (bending in the horizontal plane),
useful for rings

2

b 4 Particle trajectory

(Q,P)
(X,Y,S,Px,Py,PS) 30

(a,p)
(2, Y, 2, Pas Dy P2)

Non-linear dynamics, CERN Accelerator School, November 2024
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CQ Canonical transformations ar

The CERN Accelerator School

d Summary of canonical transformations and
approximations for simplifying Hamiltonian

- From Cartesian to Frenet-Serret (rotating)
coordinate system (bending in the horizontal plane),
useful for rings

1 Changing the independent variable from time {
to the path length s

- The Hamiltonian can be considered as havin,g 4
degrees of freedom, where the 4th “position” is time
with conjugate momentum P, = —H or Py = —H

2

—

__ Coordinate
tranformations

—

Non-linear dynamics, CERN Accelerator School, November 2024
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CQ Canonical transformations ar

The CERN Accelerator School

d Summary of canonical transformations and
approximations for simplifying Hamiltonian
- From Cartesian to Frenet-Serret (rotating)

coordinate system (bending in the horizontal plane),
useful for rings

1 Changing the independent variable from time {
to the path length s

_1 Electric field set to zero, as longitudinal
(synchrotron) motion is much slower than __ Field
transverse (betatron) one approximations

- Consider static and transverse magnetic fields

2

—

__ Coordinate
tranformations

)

Non-linear dynamics, CERN Accelerator School, November 2024
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cm Canonical transformatlo

Summary of canonical transformatlons and
approximations for simplifying Hamiltonian

From Cartesian to Frenet-Serret (rotating)

2

—

coordinate system (bending in the horizontal plane), tr;lofzrriiggfns
useful for rings

Changing the independent variable from time {

to the path length s _

Electric field set to zero, as longitudinal

(synchrotron) motion is much slower than Field

S—

Consider static and transverse magnetic fields
Rescale the momentum with the reference one and

move the origin to the periodic orbit 1
For the ultra-relativistic limit o =1, —5— —0
the Hamiltonian becomes 07
H(2,y,1,pe Py 6) = (1+6) — eA, - (1 + ﬁ) (1482 = p2 —p2
with = —ct+>—"2and B=F0 _;

Non-linear dynamics, CERN Accelerator School, November 2024
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@
deo @ High-energy, large ring

4 It is usetul for study purposes (especially for
finding an “integrable” version of the Hamiltonian)
to make an extra approximation

2

U For this, transverse momenta (rescaled to the
reference momentum) are considered to be much
smaller than 1, i.e. the square root can be expanded.

Non-linear dynamics, CERN Accelerator School, November 2024
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@
m High-energy, larg

4 It is usetul for study purposes (especially for
finding an “integrable” version of the Hamiltonian)
to make an extra approximation

U For this, transverse momenta (rescaled to the
reference momentum) are considered to be much
smaller than 1, i.e. the square root can be expanded.

d Considering also the large machine approximation
r << p , (dropping cubic terms), the Hamiltonian
is simplified to
> T 1+0 A
H_p py,  x(1+ ) CA.
2(L+9)  p(s)

JThis expansion may not be a good idea, especially
for low energy, small size rings 5

Non-linear dynamics, CERN Accelerator School, November 2024



o reneral non-linear AcCce
Cm Hamiltonian |

2

B Considering the general expression of the the longitudinal
component of the vector potential is (see appendix)

2 In curvilinear coordinates (curved elements)

O

As = (1+ L)Bome Z b + ity (z + iy)"

p(s) = n+l N

b, + 1a
0 In Cartesian coordinates As = BofRe Z - -

n—+1
with the multipole coefficients being written as
_ 1 "B, and , _ - "By

Bon! 0x™ lz=y=0 Bon! oz™

(x4 iy)"

Qp

z=y=0

B The general non-linear Hamiltonian can be written as

H(2, Y, Pas Py, 8) = Hol(, Y, Do Dys 8) + Y hey i, (8)2 =y
k. ky

with the periodic functions ", x,(s) = hi, .k, (s + C)

Non-linear dynamics, CERN Accelerator School, November 2024
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| QZ‘Q | px—l_py
2(1 + 6)

B Quadrupole:

1 Pz + P,

5 H ="k 2 2 | L Y

: B Sextupole: | p2 —|—p2

i H _ _k' 3 3 2 | X Yy
322 =30+ 5

B Octupole:

1 .+
H = Zkg(fl — 6z%y” + y*) - e T By

2(1+9)

37
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Linear magnetic fields
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B Assume a simple case of linear transverse
fields, B, = bi(s)y
B, =—0bo(s) +bi1(s)x
- main bending field — By = bg (3) — 6]; (2 5)
- normalized -
quadrupole gradient K(s) Pbl( )cPo
()C
2 magnetic rigidity Lp = T - m]

€

2

magnetic

1]

= "5 [1/m?

39
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2

W Assume a simple case of linear transverse magnetic

fields, B, = bi(s)y
By = —bo(s) + bi(s)z
main bending field —By = bo(s) = elpj%g) 1
normalized B by ( S)
quadrupole gradient K(s) Pbl( s)ery cPo [1/m*
OC
magnetic rigidity Bp = - 'T - m]

B The vector potential has only a longitudinal
component which in curvilinear coordinates is

_ 1 0A; _ 1  0A,
ST TG oy 0 DT T o

The previous expressions can be integrated to give
s(aj y,S) — % [_ﬁ T (ﬁ - K(S)) % + K(S)y? — POC As(xvyv‘i)o



2

B The Hamiltonian for linear fields can be finally written as
PatPy s 2 | K(s)(,2 2
H = 35 | - = (@ =)

. ) )
Jdeo'o The integrable Hamilt

2(1+0)  p(s) = 2p(s)2 * 2

dr  pg dpx_c?_(l
ds 1+d6° ds  p(s) p2(s)
dy _ py  dpy
ds 1+6° ds

+ K(s)) T
B Hamilton’s equation are
= K(s)y

Non-linear dynamics, CERN Accelerator School, November 2024
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2

B The Hamiltonian for linear fields can be finally written as
PatPy s 2 | K(s)(,2 2
H = 555 | | (7 —y~)

. °
de'e. The integrable H:

2(1+0)  p(s) = 2p(s)2 * 2
o dp; 0 B 1
ds 1+d6° ds  p(s) (p2(8>

dy _ py dp
. ds 1—|3—/5 ’ dsy = K(s)y
and they can be written as two second order uncoupled

differential equations, i.e. Hill’s equations (see Transverse
Dynamics lecture)

FEG) )2

B Hamilton’s equation are

X

A

[
1

x// _|_ 1 (
1+4d \ p(s)
1

0
5 + K (s)> T = o5 with the usual solution for
0=0and u=uwx,y

=0 u(s) = \/mcos (Yu(s) + Yuo)

K, == Buzs) (sin (¢ (8) + Yuo) + o cos (Py,(s) + ¢u04)2)

y//

Non-linear dynamics, CERN Accelerator School, November 2024
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Action-Angle Variables
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(Q’) Action-angle variab

2

‘B There is a canonical transformation to some optimal set of
variables which can simplity the phase-space motion

B This set of variables are the action-angle variables

B The action vector is defined as the integral J = ]{ pdq
over closed paths in phase space.

Non-linear dynamics, CERN Accelerator School, November 2024
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Jde @ Action-angle

2

B There is a canonical transformation to some optimal set of
variables which can simplify the phase-space motion

B This set of variables are the action-angle variables

B The action vector is defined as the integral J = 7{ pdq
over closed paths in phase space.

B An integrable Hamiltonian is written as a function of only
the actions, i.e. Hy = Hy(J). Hamilton’s equations give

- OHy(J
# = 8({)](- | = wi(J) = ¢ = wi(J)t + dio

i.e. the actions are integrals of motion and the angles are
evolving linearly with time, with constant frequencies
which depend on the actions

B The actions define the surface of an invariant torus,
topologically equivalent to the product of 1 circles 5

Non-linear dynamics, CERN Accelerator School, November 2024



[ ) . .
de @ Harmonic oscillator re

2

B The Hamiltonian for the harmonic oscillator can be written as

1
H(u;pu) — 2 (Pu ‘|‘f-b’2 2)

with the canonical position and momentum (U, Pu)
B From definition of the action

1 ]. 1 Uext H
Ju:—%Puduz—%\/2ﬂ—w§u2du=—[ \/QH—wgu%u:—
2T 2T m wo

V2H

Wo

With Uext = the position extrema, obtained for P,, = 0.

Non-linear dynamics, CERN Accelerator School, November 2024
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® - .
de @ Harmonic oscillat

2

B The Hamiltonian for the harmonic oscillator can be written as

1
H(u,p) = 5 (02 +wiu?)

with the canonical position and momentum (u, p, )
B From definition of the action

Uext H
= —%pudu = —%\/2157 wiuldu = / \/2H—wgu2du =
wo

Uext

with Uext = w—the position extrema, obtained for p,, = 0.
0
B The Hamiltonian in these new variables H (¢, Ju) = woJy

B The phase is found by Hamilton’s equations as

' aH U i’ —_
Oy, = (Gu, Ju) =wo andhence Pu = Wol + Pu0

0Jy
B The action is J, = —aHgb;; Ju) =

an integral of motion. W

0, ie. J, = const.

Non-linear dynamics, CERN Accelerator School, November 2024



[ ) . .
‘de @ Harmonic oscillator re

B Another way to calculate the action is through canonical
transformation using a generating function

2

B First, observe from solution of harmonic oscillator that
Py = —woutan (wot + ¢y,0) = —wou tan (¢y,)
relationship already connecting phase with old variables

Non-linear dynamics, CERN Accelerator School, November 2024
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@ . .
Jsle, Harmonic oscilla

B Another way to calculate the action is through canonical
transformation using a generating function

2

B First, observe from solution of harmonic oscillator that
Py = —wou tan (wot + ¢u,0) = —woutan (¢,)
relationship already connecting phase with old variables

B Using first generating function F (u, ¢,,)

OF
Dy = 8—1;,1 = —wou tan (¢,,)

2
B By integrating, we obtain Fi = / Pudu = —w(;u tan(¢u.)

B New momentum conjugate to the phase is given by

- 3F1_wg'u,2 9 _1 2 9 2_H

i.e. exactly the same relationship as with the previous
method.

Non-linear dynamics, CERN Accelerator School, November 2024
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Accelerator Hamiltonian in

2

B Considering on-momentum motion, the Hamiltonian can be
written as

e
m variables

The CERN Accelerator School

2 — Patp. | K.(s)z?—K,(s)y>
o 2 ! 2

B As for harmonic oscillator, use Courant-Snyder solutions to

build generating function from original to action-angles

2 2

Fi(#,y, 02, 6439) = — 555 [1an 6a(5) + aa(s)) = 5 [j: 57 [0 64(5) + ay 5)]

Non-linear dynamics, CERN Accelerator School, November 2024
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Accelerator Hamiltonia

cm variables

2

O Con51der1ng on-momentum motion, the Hamiltonian can be
written as

2, 2
Y — PrtDPy | I(m(tfs):r:Q—I(y(s)y2

2 | 2

B As for harmonic oscillator, use Courant-Snyder solutions to

build generating function from original to action-angles
2 2

Fl(x7y7¢xa¢y;8) - = [ta’n¢$(s)_|—a’$(8)]_ J

tan ¢y (s) + ay(s)]

26 (s) 26, (s)
B The old variables with respect to actions and angles are
u(s) = \/2Bu(s)Jucos du(s) , puls) = —y/ 5 (s Gu(s) + au(s) cos du(s))

and the Hamiltonian takes the form

J. Jy
B(5) By(s) .

HQ(JQC, Jy, S) —

Non-linear dynamics, CERN Accelerator School, November 2024



o
m Normalised coordinates

B The transformation to normalized coordinates

()= (5 ) () o ()= ()

transforms motion to simple rotations.

2

Non-linear dynamics, CERN Accelerator School, November 2024
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o
cm Normalised coordinates

B The transformation to normalized coordinates

()= (5 ) () o ()= ()

transforms motion to simple rotations.

2

B In the present coordinates, the phase is not a linear function

B A further transformation will be needed to eliminate the
“time” dependence, by “averaging” (integrating) the
previous Hamiltonian over one turn (Floquet
transformation)

Non-linear dynamics, CERN Accelerator School, November 2024
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m Normalised coordm

The CERN Accelerator School

B The transformation to normalized coordinates

()= (5 ) () o ()= ()

transforms motion to simple rotations.

2

B In the present coordinates, the phase is not a linear function

B A further transformation will be needed to eliminate the
“time” dependence, by “averaging” (integrating) the
previous Hamiltonian over one turn (Floquet

transformation)

B The 1—turn Hamiltonian 1S

B The motion is the one of two lmearly independent harmonic

Non-linear dynamics, CERN Accelerator School, November 2024
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2

Canonical perturbation
theory
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deo @ Canonical perturl

2

B Consider a general Hamiltonian with 72 degrees of freedom
H(J, P, (9) — H()(J) + GHl(J, @, (9) + 0(62)
where the non-integrable part H1(J, ®,0) is 27 -periodic
on the angles ¥ and the “time” 0

B Provided that € is sufficiently small, tori should still exist
but they are distorted

B We seek a canonical transformation that could “straighten
up' the tori, i.e. it could transform the non-integrable part
of the Hamiltonian (at first order in €) to a function only of
some new actions H (J) plus higher orders in €

Non-linear dynamics, CERN Accelerator School, November 2024
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de e Canonical pert

2

B Consider a general Hamiltonian with 7 degrees of freedom
where the non-integrable part Hi (J ,,0) is 27T -periodic
on the angles ¥ and the “time” 0

B Provided that € is sufficiently small, tori should still exist
but they are distorted

B We seek a canonical transformation that could “straighten
up' the tori, i.e. it could transform the non-integrable part
of the Hamiltonian (at first order in €) to a function only of
some new actions H (J) plus higher orders in €

B This can be performed by a mixed variable close to identity
generating function S(J,p,0) =J -+ €S1(J, p,0) + O(?)
for transforming old variables to new ones Y~
(J,p)

B In principle, this procedure can be carried
to arbitrary powers of the perturbation

Non-linear dynamics, CERN Accelerator School, November 2024




2

B By the canonical transformation equations (slide 19), the
the old action and new angle can be also represented by a
power series In €

J = j—l— 6831(']’ L 9) —+ 0(62) J = j—l— 6851(117_%07 0) + 0(62)
Jp 0P

— aSl(J_acp?e) 2 Of - 8S1(j,95,9) 2
— — O — — —

P=@+e o7 + O(e?) Y =@—c¢ 57 + O(e)

Non-linear dynamics, CERN Accelerator School, November 2024
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2

(‘,\') Canonical pertu \

" By the canonical transformatlon equations (slide 23), the
the old action and new angle can be also represented by a

power seriesin €
= (951 (J, @, (9)

_8S.(J, @, 0)

_ 2 _ 2
J=J+¢ 90 + O(e?) J=J+e¢€ i + O(e?)
] 09T, 0.0 0 O 9510

— _ O — O — -

P =@+e 57 + O(€”) p=@—¢ 57 + O(e)

B The previous equations expressing the old as a function of
the new variables assume that there is possibility to invert
the equation on the left, so that S1(J,®,0) becomes a
function of the new variables

B The new Hamiltonian is then _
_ o) — H - = _ 0 aSl(J79079> O 2
H(J,¢,0) = H(J(J, ), p(J, ),0) + e——, + O(€)

B The second term is appearing because of the “time”
dependence through 0

Non-linear dynamics, CERN Accelerator School, November 2024
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B The question is what is the form of the generating function
that eliminates the angle dependence

eeeeeeeeeeeeeeeeeeeeeeee

B The procedure is cumbersome (see appendix for details),
but here is the final result,

— - . Hix(J) (LB
S(J —J. E \ i(k-@+pf) 1 (2
( 7(70) 90‘|‘€7Jk Ok-w(])+pfi - (E)
7 = OHo(J)

with the frequency vector w(J) =

and the integers k,p # 0 oJ

Non-linear dynamics, CERN Accelerator School, November 2024
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de @ L[orm of the ge

2

B The question is what is the form of the generating function
that eliminates the angle dependence

B The procedure is cumbersome (see appendix for details),
but here is the final result,

Hix(J k-B410
S(J, J-O+ei eilk-o+p9) 4
(J,@¢)=J @ k%éO:k w(J)+p ()

- 0H
with the frequency vector w(J) = (90 } )
and the integers k,p # 0

B [f the denominator vanishes, i.e. for the resonance
condition k - w(J) + p = 0, the Fourier series
coefficients (driving terms) become infinite

B [t actually implies that even at first order in the
perturbation parameter and in the vicinity of a resonance,
it is impossible to construct a generating function for
seeking some approximate integrals of motion 61
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de @ Problem of small de

B In principle, the technique works for arbitrary order, but the

2

disentangling of variables becomes difficult even to 2nd order!!!

B The solution was given in the late 60s by introducing the Lie
transforms (e.g. see Deprit 1969), which are algorithmic for
constructing generating functions and were adapted to beam
dynamics by Dragt and Finn (1976)

Non-linear dynamics, CERN Accelerator School, November 2024

62



(‘:\’) Problem of s i

The CERN Accelerator School

B In principle, the technique works for arbitrary order, but the

2

disentangling of variables becomes difficult even to 2nd order!!!

B The solution was given in the late 60s by introducing the Lie
transforms (e.g. see Deprit 1969), which are algorithmic for
constructing generating functions and were adapted to beam
dynamics by Dragt and Finn (1976)

B On the other hand, the problem of small denominators due to
resonances is not just a mathematical one. The inability to
construct solutions close to a resonance has to do with the un-
predictable nature of motion and the onset of chaos

B KAM theory (see appendix) developed the mathematical
framework into which local solutions could be constructed,
provided some general conditions on the size of the perturbation
and the distance of the system from resonances are satisfied

B Very difficult though to apply directly this theorem to realistic
physical systems, such as a particle accelerator

Non-linear dynamics, CERN Accelerator School, November 2024
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. Example: Perturbation
- treatment of a sextupole

=
>
el
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o
m Perturbation treatment for a

B Consider the simple case of a periodic sextupole

2

perturbation and restrict the study only to one plane. The

Hamiltonian is written as,

2 2 3
p,.+K(s)x K
H(x,px, 8) — 2( ) | ({39)33
where K (s)and K,(s)are periodic functions of time.

Non-linear dynamics, CERN Accelerator School, November 2024
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o
cm Perturbation treatment

B Consider the simple case of a periodic sextupole

2

perturbation and restrict the study only to one plane. The

Hamiltonian is written as,

2 2 3
p,.+K(s)x K
H(ZIZ‘,]?QC, S) — 2( ) | ({;)a:
where K (s)and K,(s)are periodic functions of time.

B We proceed to the transformation in action angle variables
to write the Hamiltonian in the form

H=Hy(J)+ Hi(¢p,J) = 5{5) + 2\/52];3(8) (Jﬁ(s))g/Q cos® ¢
J K( )

3/2 COS COS
5 T s (TBE)Y (cos36 + Beoso)

Non-linear dynamics, CERN Accelerator School, November 2024
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2

B The perturbation procedure implies to split the

perturbation in an average part over the angles and

an oscillating part

~ V2ka(s)

-y
-~ S

(Jﬁ(s))g/2 (cos 3¢ + 3 cos )

(%) %Hl(‘]v p)dp

~
\\\\\\

where <H1>¢

{H1} = H1 — (Hi)y
— ZHM(J)ei(k'“’

Non-linear dynamics, CERN Accelerator School, November 2024
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2

B The average part should be only a function of the action

[ 4 .
de ¢ [uneshift from

B Jts derivative with respect to the action should provide the
frequency shift (tune-shift) due to the non-linearity

B |t can be shown that this quantity vanishes for a sextupole
perturbation

<8H1(¢,J)> ~ ka(s)B(
0J v 8\/577

S) ( (S))1/2 /‘27‘(‘(
JB cos 3¢ + 3 cos gb)dqﬁ =0
0

B Sextupoles do not provide any tune-shift at first order

B But we know by experience that this is not true, i.e. first
order perturbation theory fails to give the correct answer

B One has to go to higher order (see appendix)

Non-linear dynamics, CERN Accelerator School, November 2024
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o
m Perturbation treatment fo

B The oscillating part is then the same as the original
Hamiltonian

{H1} = Hy— (Hy)g = H

2

_ Ks(s)
3v/2

B Following the canonical perturbation procedure the
generating function is =

A I Hi(J)  ithgapo
S(J,¢)=J- b+ A i(k-o+p0) o
(J,¢) b+ k;Ok-V(J)ere

B The only non-zero Fourier terms are for £k = 1,3 and

(jﬂ(s))3/2 (cos 3¢ + 3 cos ¢)

o

S(.3) =T 6+ (756)*2 S (

_|_
3V +p vV+p

S
6v/2

ci(30+p0)  g,i(d+ph) )

p=—00

Non-linear dynamics, CERN Accelerator School, November 2024
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dele rerturbatici

B We derived (with a lot of effort) the common result that
sextupoles at first order excite integer and third integer
resonances

2

B Again, this is not the full story! It is known that sextupoles
can drive any resonance, either because their strength is
large, or because the particle is far away from the closed
orbit

B This can be shown again by pursuing the perturbation
approach to second order (as for the tune-shift)

B A useful application is to use the generating function for
computing the correction to the original invariant, as the
new one should be an integral of motion (at first order)

J%j | aSl(J7¢79>
ote

Non-linear dynamics, CERN Accelerator School, November 2024
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m Phase space for sextupole

appendix)

06|
04
02}

a 0
02
04+
06

08
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B For small perturbations, the new action variable is almost an
invariant but for larger ones phase space gets deformed

B Close to the integer or third integer resonance, canonical
perturbation theory cannot be applied

B The solution is provided by secular perturbation theory (see

\\'- A -.--. -..-\ //.f .:
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Jefe) Content o

BlFrom linear to non-linear or
from matrices to maps

BLie formalism for building maps
BSymplectic integration

B Normal forms for non-linear
systems

dynamics, CERN Accelerator School, November 2024

BTruncated Power Series through
differential Algebra

Non-linear

72
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From linear to non-linear
or
from matrices to maps

2
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deo @ Linear system in bean

B Linear (uncoupled) transverse particle
motion is described by Hill’s equation

"+ Ky (s)x = 0

B Linear equations with s-dependent George Hil
coefficients (harmonic oscillator with time
dependent frequency)

Non-linear dynamics, CERN Accelerator School, November 2024
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. °
de @ Linear system in be

B Linear (uncoupled) transverse particle
motion is described by Hill’s equation

"+ Ky (s)x = 0

B Linear equations with s-dependent George Hil
coefficients (harmonic oscillator with time
dependent frequency)

B In a ring (or in transport line with symmetries),
coefficients are periodic K, (s) = K;(s+ C)

B Not straightforward to derive closed analytical solutions
for the whole accelerator...
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. °
deo @ Linear systeminb

B Linear (uncoupled) transverse particle
motion is described by Hill’s equation

"+ Ky (s)x = 0

B Linear equations with s-dependent George Hil
coefficients (harmonic oscillator with time
dependent frequency)

B In a ring (or in transport line with symmetries),
coefficients are periodic K, (s) = K;(s+ C)

B Not straightforward to derive closed analytical solutions
for the whole accelerator...

B ... but do we really care, in particular for a system
composed by discrete building blocks?

Non-linear dynamics, CERN Accelerator School, November 2024
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(Q’) Harmonic oscillator

2

B Consider K(s) = k, = constant
w' + ko u=0

B Equations of harmonic
oscillator with solution

Ju
Y Y

> u(s) = C(s) u(0) + S(s) u'(0)
W(s) = C'(s)u(0)+ S (s)u'(0)

Non-linear dynamics, CERN Accelerator School, November 2024

77



2

1 1 1 M Consider K(s) = k, = constant
uw' 4+ ko u=0
B Equations of harmonic

® o .
'de @ Harmonic oscillat

oscillator with solution

m Note that the solution can be written in matrix form

(5'(@))) - (g'(@)) 5’8) (5'(8)) .

% \ 4 ) 4 $U

: | u(s) = C(s) u(0)+ S(s) u'(0)
£ u'(s) = C'(s)u(0) + S'(s)u’(0)
£ with 1

: C(s) = cos(\Vkos) , S(s)=-—=sin(\/kgs) , for £,> 0
V h Sy

Z 1

2 C(s) = cosh(v/|kols) , S(s) = msinh(\/\ko\s) ,for &, <0
2 0

£



Jele) Matrix formalism

B General transfer matrix from sotos

(1), = Mot (3 > - (G toim) <>

B Note that det(M(s|sg)) = C(s]s9)S’(s]|so) — S(s|sg)C'(s|sg) =1

which is always true for conservative systems

2

Non-linear dynamics, CERN Accelerator School, November 2024
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de’e, Matrix formalis

B General transfer matrix from sotos

() = Misleo) (> “ (g'(fs'fs?) SS'(<§|SS?>> (>

B Note that det(M(s|sg)) = C(s]s0)S'(s]sg) — S(s|sg)C'(s|sg) =1

which is always true for conservative systems

2

B Any line can be build by a series of matrix multiplications

M(sp|s0) = M(sp|sp_1)... M(s3|s2) - M(s2]|s1) - M(SHSOZ

\ &

Y

S, S, Sy eee Sy R o fromsytos,
gl
% > o fromsytos,
—_—
from s, to S,
N— e

from s, to s,
B For a full ring, the matrix multiplication will provide the full

transfer matrix for 1-turn Mo — [Cosh + asin p B sin u
¢ —y sin COS [t — Qv sin L

Non-linear dynamics, CERN Accelerator School, November 2024
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Jele, Non-linear moti

B Nonlinear elements can be represented by generalized
polynomials

/1 1,.]
' Ky(s)x = E a;;(s)z'y’
2,J
B For example, general magnetic fields can be represented by
the multi-pole expansion

00
: : : —1
B, + 1B, = E (b, — tan)(x + iy)"
n=1
B Equations of motion in the horizontal plane become
B,(x,y,s
Clj//—l_Kg;(S)ZE— y( ) I )
p

B Closed solution does not exist, in principle! 8

Non-linear dynamics, CERN Accelerator School, November 2024




Jele Maps NN

B A generalization of the matrix (which can only describe linear
systems), is a map, which transforms a system from some
initial to some final coordinates

NI

Z

B Analyzing the map, will give useful information about the
behavior of the system

Non-linear dynamics, CERN Accelerator School, November 2024
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Jo’e) Maps N

2

H A generahzatlon of the matrix (which can only describe linear
systems), is a map, which transforms a system from some
initial to some final coordinates

NI

Z

B Analyzing the map, will give useful information about the
behavior of the system

m There are different ways to build the map:
2 Taylor (Power) maps
2 Lie transformations

2 Truncated Power Series Algebra (IPSA), can generate
maps from straight-forward tracking

Non-linear dynamics, CERN Accelerator School, November 2024

m Preservation of symplecticity is important 5
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/:1:! / ;1:1r
5(s9) = T _ T

y
\v /.,

or through the matrix M, as

yf
\ v /.

1

transformation as
AN A

. £ I

Z(s9) = —

v/

v/

—

_|_

+

(

(

0
I'Igl " Lgy
0

\ ky - Ysq )
Z(s2) = M - Z(s1).
m For a thin sextupole, we can right the coordinate

b=

\

0
2

kg : (3;31 _

0

B For a thin quadrupole the equivalent map can be written

\

ye,)

\ ko - (5751 'ysl) /

or Z(s2) = Mo Z(51) where now M is a non-linear map.

2
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OO0 Building a Taylor

B A general representation for the map for the horizontal
position can be

2

matrix part (power 1)

o

”~

Xnew = R“-X +R12'-xl +R21'}’ +R22-}7’+

sextupole part (power 2)

M

# ' 9
+T111 . .,\fz + T112 cxx’ + T122 X+ T113 - Xy + T114 . ,’Cy! + ...

octupole part (power 3)

N

+U1111 . .)63 + U1112 . .)Cz.)C! + ...

or, in a more compact form up to 3*¢ order, for 7=1,...,06

Snew Z ngzk + Z ZTjklezl + S‘ S‘ S‘ nglmzkzlzm

k=1 1=1 k=1 1=1 m=1

Non-linear dynamics, CERN Accelerator School, November 2024
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de@ |avlior map for a s¢

2

B For a sextupole in one plane, the representation is written as

[ x

X

X Riyw Rip Ty T T
— (®] x2

x’ Ry Ry Tony 1o Towo
new xx’

\ 7 )
or in general for a sextupole of length L and strength kg
p) 3 4
Xy =xitLle -k (LT(X% — VD) + S5 ax =y + S50 -7 )

2 3
Y=o — ko (503 =3 + §(ax -y + G2 -)D))

2 3 4
2 =n+tly +k (%xlyl + ey )+ 5‘—4(x‘iy‘i))

2 3
Yo =V + ko (%xlyl + Z(ny + X)) + %(x’i)”i))

B But what about symplecticity?

Non-linear dynamics, CERN Accelerator School, November 2024

B Need to introduce Lie formalism 86



&

The CERN Accelerator School

87

Lie formalism

$207 TOqUISAON] “[O0DS I0JRId[a00Y NYHD ‘SOTWeUAp Iesaul[-UuoN



2

B Consider two sets of canonical variables Z , Z which
may be even considered as the evolution of the system
between two points in phase space

dee, Symplectic maps

B A transformation from the one to the other set can be
constructed throughamap Af . 7z 3 7Z

Non-linear dynamics, CERN Accelerator School, November 2024
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oo, Symplectic maps

2

B Consider two sets of canonical variables Z , Z which
may be even considered as the evolution of the system
between two points in phase space

B A transformation from the one to the other set can be
constructed throughamap Af . 7z 3 7Z

B The Jacobian matrix of the map M=M (Z, t) is
0%
=5,
B The map is symplecticif M1 JM = J where J = ( 0 I>
B It can be shown that det(M) =1

composed by the elements M/

Non-linear dynamics, CERN Accelerator School, November 2024
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'Jeo'e, Oymplectic

2

B Consider two sets of canonical variables Z , Z which
may be even considered as the evolution of the system
between two points in phase space

B A transformation from the one to the other set can be
constructed throughamap Af . 7z 3 7Z

B The Jacobian matrix of the map M=M (Z, t) is
0%
= 5,
B The map is symplecticif M1 JM = J where J = (_g (I)>
B It can be shown that det(M) =1

B [t can be shown that the variables defined through a
symplectic map [Zi, Z;| = [z, 2j] = Z;; which is a known
relation satistied by canonical variables

composed by the elements M/

B |n other words, symplectic maps preserve Poisson brackets

Non-linear dynamics, CERN Accelerator School, November 2024
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deo'e Are Taylor maps

B To test the symplecticity of Taylor maps, we have to 55
. . . 1

construct the Jacobian matrix with elements M;; = 5,

J

2

B The “thick” sextupole Taylor map, is written
X =x+lag -k (LTZ(X% V) + By -y + L —y’f))

/

2 3 ,
Y= — ks (63 =3 + Bonx -y + 202 - 3D)
2 3 4
v» =wn+Lly, +k (%xm + Ly + i) + é‘q(Xiy*i))

4

2 3
Vo =) +ky (%Xl}’l + L (ay) +yix) + %(xi)"l))

B All the coefficients of the Jacobian depend on initial
conditions, e.g.
L? L,
5 1 ks [ — -
oy ( i 12:1:1)

and unless appropriately chosen they cannot satisfy det(M) =1

Non-linear dynamics, CERN Accelerator School, November 2024
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e . .
'deole, Lie formalism

B The Poisson bracket properties satisfy what is
mathematically called a Lie algebra

2

B They can be represented by (Lie) operators of the form

fig=1[f.g] and: f:°g=1f[f g] et

Non-linear dynamics, CERN Accelerator School, November 2024
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e . .
'deole, Lie formalism

B The Poisson bracket properties satisfy what is
mathematically called a Lie algebra

B They can be represented by (Lie) operators of the form

frg=1[fg] and: f:?g=[f[f g]] et

B For a Hamiltonian system H(z,t) there is a formal

solution of the equatlons of motion 92 — H,z| = H :z

dt
written as z(t) = Z tk "z = etz with a symplectic

map M = ¢ "

Non-linear dynamics, CERN Accelerator School, November 2024
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o o .
Jole, Lie formalis f

B The Poisson bracket properties satisfy what is
mathematically called a Lie algebra

B They can be represented by (Lie) operators of the form

frg=1[fg] and: f:?g=[f[f g]] et

B For a Hamiltonian system H (z,t) there is a formal

solution of the equatlons of motion % = |H,z| = H : z
written as z(t) = Z tk "2 = etHizy witha symplectic

map M = ¢ "

The (1-turn) accelerator map can be represented by the
composition of the maps of each element

M = ef2i eifst gifar  where f; (called the
generator) is the Hamiltonian for each element, a
polynomial of degree 771 in the variables 21,..., 2y

Non-linear dynamics, CERN Accelerator School, November 2024
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CA’) Lie operators for simple el

The CERN Accelerator School

Non-linear dynamics, CERN Accelerator School, November 2024

Element Map Lie Operator

Drift space r=x9+ Lpg exp(: — %LpQ:)
P =DPo

Thin-lens Quadrupole o = xg exp(: — %;1:2:)
P=Po— %3-'30

Thin-lens Multipole T = I exp(:Ax™:)
p =po+ Anz" !

Thin-lens kick r=uxg exp(: [, f(z)dz":)
p=po+ f(z)

Thick focusing quad r=xgcoskL 4 B sin kL exp|: — s L(k%2? + p?):]

Thick defocusing quad
Coordinate shift
Coordinate rotation

Scale change

p = —kxrgsinkL + pgcoskL
x = rgcosh kL + £ sinh kL
p = kxgsinh kL + pg cosh kL
rT=x9— b

P=Dpota

T = T COS [l + po SIn [

P = —xg SIn j1 + Po COS L4
r=e "z

P = EAPD

«e}v:p[:%l}(k%c2 — p?):]
exp(:ax + bp:)
exp[: — gu(2® + p?)]

exp(:Azxp:)
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Je'g) Formulas for LiCORE.

a: =0, e® =1
fia=0, el'a=a
fif =0, elf=f

{:f:0g:) =[], gl
eg(X) = g(e' X)

el G:g)e ™ = Qe g

2




'dee, Map for quadrupole

B Consider the 1D quadrupole Hamiltonian
1
H =3 (k12* + p?)
B For a quadrupole of length [, the map is written as
e%:(k1:c2—|—p2):

2

Non-linear dynamics, CERN Accelerator School, November 2024

97



de'e Map for quadrupe

B Consider the 1D quadrupole Hamiltonian
1 2 2
H = 5 (kiz= + p?)
B For a quadrupole of length [, the map is written as
e%:(kla}2+p2):
B Jts application to the transverse variables is

O 2\n 2\n
ke, _ N (ERLTT L (R D)
¢ ;}( el C T enrn?

L. .2 —k L2)” (—k1 L)
—5 (k1 +p? ) 1 1
© Z ( (2n)! VK1 (2n + 1)! ‘”)

2
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dee Map for quadru

B Consider the 1D quadrupole Hamiltonian
1 2 2
H = 5(kix® + p°)
B For a quadrupole of length L, the map is written as
6%:(kle—l—p2):
B Jts application to the transverse variables is

> 2\n 2\n
—%:(kla}2—|—p2): L (_le ) L(_le )
‘ Z( ooy T enr P
—k L2) (—k L%)"
— 5 :(k1z®+p®): 1 / 1
P= Z ( (2n)! *1 90 1+ 1)1 “’)
B This finally pr0V1des the usual quadrupole matrix

1
e~ % (Bt +p%) g cos(v/ k1 L)x + NG sin(v/k1L)p
1
e~z e+, = |l sin(v/k1L)x 4 cos(\/ k1 L)p 99

2
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CA’) Map for general monomial

B Consider a monomlal in the positions and
momenta £ D

2

e T T,
B The map is writtenas €“" ¥

Non-linear dynamics, CERN Accelerator School, November 2024
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(A') Map for general mon

B Consider a monomlal in the positions and
momenta £ P

B The map is writtenas €“" ¥

B ]ts application to the transverse variables is
JFor N # m

. n_m., 3 _ — 11 _
e T D e — o ____a(n_m)xn lpm 1| m—n

. n_m., 3 _ — 1 _
e TP ‘D= __——oz(n—m):(;” 1pm 1| n—m

JdFor . =— TN

. n_mn., L n—1 _n—1
e.CK.CU D ‘r = 1€ anx D

n—1 n—1

: n,_n,
e.oza: D ‘D :peom,x D

Non-linear dynamics, CERN Accelerator School, November 2024
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2

B For combining together the different maps, the Campbell-
Baker-Hausdorff formula can be used. It states that for 11, 2
sufficiently small, and A, B real matrices, there is a real
matrix C for which

t1A6t2B C

€ — €

Non-linear dynamics, CERN Accelerator School, November 2024
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de'e, Map Concatenas

2

B For combining together the different maps, the Campbell-
Baker-Hausdorff formula can be used. It states that for 11, 2
sufficiently small, and A, B real matrices, there is a real
matrix C' for which

1A 2B _ C

B For map composition through Lie operators, this is
translated to " — /169" with

h=f4gty frotos fPgtaig? fho fag?fmrmigh fon i fihgt .
or
h=1f+g+ g lhhal + gl ol + 500 [0 A1+ 5 119, 09 A0 = [0, o o £ = o [, 0F, (£ ol +

i.e. a series of Poisson bracket operations.

Non-linear dynamics, CERN Accelerator School, November 2024
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2

B For combining together the different maps, the Campbell-
Baker-Hausdorff formula can be used. It states that for 11, 2
sufficiently small, and A, B real matrices, there is a real
matrix C for which

Je'e Map Conciigy

1A 2B _ C

B For map composition through Lie operators, this is
translated to " — /169" with

h=f4gty frotos fPgtaig? fho fag?fmrmigh fon i fihgt .
or
h=F+g+ 510+ U gl + 15l 19 £ + 5210591 09 A0 = sl 9, L9 A1) = s U5 U ) +

i.e. a series of Poisson bracket operations.

B Note that the full map is by “construction” symplectic.

Non-linear dynamics, CERN Accelerator School, November 2024

B By truncating the map to a certain order, symplecticity is
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2

B The Campbell- Baker-Hausdorff formula for
Lie maps has another useful form,
depending if the summation is done over
one or the other function

Useful form of Ck

g _ ot ( = ) O,

or

€:f+( o g)+0(g2)r

School, November 2024

e:fzezg: e

Non-linear dynamics, CERN Accelerator
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2

B Symplecticity guarantees that the transformations in phase
space are area preserving

(A’) Why symplecticity is i1

eeeeeeeeeeeeeeeeeeeeeeee

B To understand what deviation from symplecticity produces
consider the simple case of the quadrupole with the general
matrix written as

Mo — cos(vVkL) ﬁ sin(vkL)
- —VEksin(vVEkL)  cos(VkL)

Non-linear dynamics, CERN Accelerator School, November 2024
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c‘x) Why symplecticit

Non-linear dynamics, CERN Accelerator School, November 2024

2

[} Symplect1c1ty guarantees that the transformations in phase
space are area preserving

To understand what deviation from symplecticity produces
consider the simple case of the quadrupole with the general

matrix written as

Mo — cos(VkL) ﬁ sin(vkL)
@ —VEksin(vVEkL)  cos(VkL)

Take the Taylor expansion for small lengths, up to first

order 1 T, ,
MQ = (—kL 1> -|—O(L )

This is indeed not symplectic as the determinant of the
matrix is equal to 1 + kL?,i.e. there is a deviation from
symplecticity at 274 order in the quadrupole length

108



@ Phase portrait for non—sympl

The CERN Accelerator School

B The iterated non-symplectic matrix does not
provide the well-know elliptic trajectory in phase
space

2

B Although the trajectory is very close to the original

= one, it spirals outwards towards infinity

2

= 0.0004

: E‘ﬂ'ﬁﬁ?s'irﬁé'l’epﬁlg gﬁp

E 0.0003 | i
f; 0.0002 - s
;% 0.0001 s
4:8 "‘x 0+~ -
Z

o

5 _0.0001 | -
é -0.0002 | |
£,

; -0.0003 | |
Ig -0-0004 -2 15 I1 0.5 I[1: ol.s I1 1|.5 2
Z x
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(Qq Restoring symplec

B Symplecticity be can restored by adding “artificially” a
correcting term to the matrix to become

1 L 1 0\ (1l L
MQ:(—kL 1—kL2>:<—kL 1) (0 1)

B In fact, the matrix now |
can be decomposed as a drift ~ |
with a thin quadrupole
at the end

2

—

B This representation,
although not exact -
produces an ellipse  ooor|
in phase space oozr

Non-linear dynamics, CERN Accelerator School, November 2024




(Qq Restoring symplec

B The same approach can be continued to 2" order of the
Taylor map, by adding a 3 order correction

2

— 2kL?* L—<kL*\ (1 LJ2 1 0\ (1 L/2
MQ:( kL %kB)_(o 1 )(—kL 1) (o 1)

B The matrix now can be . | .
decomposed as two half < = | < —=
drifts with a thin kick at the L k1L —
center 0.0001 2 . 2

ex aaﬁ::t.:quI drupole -
symplectic map OE;I?I

B wmmet:rrcmac\

P E:

B This representation
1S even more exact as
the error now is at
3rd order in the
length

g ¢

Non-linear dynamics, CERN Accelerator School, November 2024

E



2

B The idea is to distribute three kicks with different
strengths so as to get a final map which is more accurate
then the previous ones

B For the quadrupole, one can write

o= (549 (i D6 ) L D6 ) (e DG 47
which imposes Z d; = Z c; =1,

B A symmetry condition of this form can be added
d1:d4, d2:d3, C1 — C3

Non-linear dynamics, CERN Accelerator School, November 2024
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dete 3-kick symplectic

B The idea is to distribute three kicks with different
strengths so as to get a final map which is more accurate
then the previous ones

2

B For the quadrupole, one can write

Maq = ((1) d11L> (—cikL (1)> <(1) d%/?) <—cikL ?) ((1) d3€/2> (—cik:L ?) ((1) d4€/2>
which imposes Z d; = Z c; =1,
B A symmetry condition of this form can be added
di =dy, dog=d3z, c1 =c3

B This provides the matrix Mg = ﬂmhl 212> with
21 22

M1 = Moy = ——kL + c1da(di + = )k2L4 didacicok’ LO

mys = L — (2 L T hda + 2d1d201)kL + 2dydacy (didy + —= )k2L5 + d?d3cicok LT

Non-linear dynamics, CERN Accelerator School, November 2024

= mo1 = —kL + c1da(1 4 c2)k*L? — d3cieok’ LP
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e . o«
'de e 3-Kick symplectic integre

B By imposing that the determinant is 1, the following
additional relations are obtained

2

ey 1
c1da(dy + 5) = 51

Co 1
— + dqd 2d1dsc1 = =
4—|- 109 + 2d1d2Cq 6
1

c1da(1 4 ¢co) = 6

Non-linear dynamics, CERN Accelerator School, November 2024
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e . o« e
'de e O-Kick symplectic inte

B By imposing that the determinant is 1, the following
additional relations are obtained

2

C2 1
do(d =)= —
c1da(dy + 2) 5
Co 1
— + dqd 2d1d S
) 1 + d1ds + 2d1dacy G
3 1
% 61d2(1 + CQ) = 6
2 M Although these are 5 equations
g with 4 unknowns, solutions exist
: Ji—d 1 5 — 1 —21/3
'%é 1 — 4_2(2_21/3)7 2 — 3_2(2_21/3)
<
é 1 21/3
501—03 9 _91/3 02:_2_21/3
£
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dele 3-kick symplecti

B By imposing that the determinant is 1, the following
additional relations are obtained

2

B This is actually the famous 7 step
4™ order symplectic integrator of Forest, Ruth and Yoshida
(1990). It can be generalized for any non-linear element

B [t imposes negative drifts...

C 1

Cldg(dl + —2) —
2 24 : ® % :
C2 1 | - - |
. Z + d1d2 + 2d1d261 = 6 : @ F:
S 1 | |
Fq.é Cld2(1 —l_ 62) — 6 i @ . :
> B Although these are 5 equations | | | |
2 with 4 unknowns, solutions exist | fe— ||~—1 |
= 1 1 — 21/3 : l ® || ® l :

Edi=dy= , dy=ds =

22— 21/9) 2 =277 :
% 1 91/3 : :
o G1=a = , Ca= = | - |
g 9 _91/3 9 _91/3 | ® |

116




(Qq Higher order integrator

5

W Yoshida has proved that a general integrator map of order
2k can be used to built a map of order 2k + 2
Sokt2(t) = Sax(w1t) 0 Sak(wot) 0 Sk (1)

1

—D2k+1 1

. €T p— , €T p—
with 0 Q—Qﬁ 1 2—2#

Non-linear dynamics, CERN Accelerator School, November 2024

117



(Qq Higher order inte |

5

W Yoshida has proved that a general 1ntegrator map of order
2k can be used to built a map of order 2k + 2
Sokt2(t) = Sax(w1t) 0 Sak(wot) 0 Sk (1)

_22k:1—|—1 1
. Qj — , ZL‘ —
with *0 - 1 5 _ gzae

B For example the 4th order scheme
can be considered as a composition
of three 2" order ones (single kicks)
S4(t) — SQ (CElt) o SQ (ZBQt) O SQ (xlt)

—25 1
T L1 = 1
2 — 23 2 — 23

Non-linear dynamics, CERN Accelerator School, November 2024

118



@ R .
Joe Higher order in @

" M Yoshida has proved that a general integrator map of order
2k can be used to built a map of order 2k + 2
Sgk_|_2 (t) — SQk (.Tlt) O Sgk (.CL‘Qt) O Sgk (ZElt)

1
—9D2k+1 1
y L1

B For example the 4" order scheme

can be considered as a composition
of three 2" order ones (single kicks)
S4(t) — SQ (iElt) O SQ (513075) O SQ (.CClt)
—23 1
Ty L1 = 1
2 —23 2 — 23
B A 6'h order integrator can be
produced by three interleaved 4" order ones (9 kicks)
S@(t) — S4(£Clt) O S4(£I?()t) o S4(£I?1t)
—25 1
L1 = 9_ 9l 119
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2

B Make a coordinate transformation so that we get a simpler
form of the matrix, i.e. ellipses are transformed to circles
(simple rotation)

N\ -C

M=AoRoA "' or: R=A'oMoHA

B Using linear algebra, the solution is

VBGo) 0 (cosw sinou,r))
and R=

A = a(5o0) 1 .
" VB0 VBG0) S o)

B This transformation can be extended to a non-linear system

Non-linear dynamics, CERN Accelerator School, November 2024
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ux) Generic normal for

2

B Normal forms consists of finding a canonical transformation
of the 1-turn map, so that it becomes simpler to analyze

B In the linear case, the Floquet transformation is a kind a
normal form as it turns ellipses into circles

Non-linear dynamics, CERN Accelerator School, November 2024
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de'e Normal formsig

2

B Normal forms consists of finding a canonical transformation
of the 1-turn map, so that it becomes simpler to analyze

B In the linear case, the Floquet transformation is a kind a
normal form as it turns ellipses into circles

B The transformation can be written formally as
z — s o
with the originalmap M = ® ' o AN o ®
CD_ll lq’_l and its normal form

" N=doMod ! =¢hesr
N

Non-linear dynamics, CERN Accelerator School, November 2024
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Ye'le NormaliOlg 2

B Normal forms consists of finding a canonical transformation
of the 1-turn map, so that it becomes simpler to analyze

B In the linear case, the Floquet transformation is a kind a
normal form as it turns ellipses into circles

B The transformation can be written formally as
z 2 7

1 ‘with the original map M = P loNod
* l lq’_ and its normal form
u —— u’ N=bdoMod ! =¢ehers

B The tranjgformation ® = ' is better suited in action
angle variables,i.e. { = e~ h taking the system from
the original action-angle hfﬁy = /2, €797 to a new set

;—L’y (N) =+/21, e Tz (N) with the angles being just
simple rotations, Yz,y (N) =27Nvy, + Yz .y, and the

new effective Hamiltonian depends only on the new actions

Non-linear dynamics, CERN Accelerator School, November 2024



me? Effective Hamilt

2

B The generating function can be written as a polynomial in

the new actions, i.e.

=" FimG GGG = fiam (21) 1 (21,)

Jkim

B There are software tools that built this transformation

B Once the “new” effective Hamiltonian is known, all
interesting quantities can be derived

B This Hamiltonian is a function only of the new actions, and

to 34 order it is obtained as
heff —=v, 1, + Vyly
1
— 50%52 + 1130 + cy1 L0 + c30°

-+ cmli + copyloly, + cyylj + Cpol 0% + cy2[y520454

Non-linear dynamics, CERN Accelerator School, November 2024
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SQ? Effective Hamilton

B The correction of the tunes is given by

———————————
~~~~~~~~~

1 Oh S
Qr = o a;ff 27T ,(yx vt ZCmI + cxy]g\—l—, cmlé + cw25 )
i \ ‘;
1 8heff AN ,’\ ]
= V’QCI—I—CI 10 + Cpad? )
O =5 oI, 2 ( ARG N T Y
£ tunes tune-shlft with 1+ and 2nd order
% amplitude chromaticity
s W The correction to the path length is
;%; 3heff ----------------
:As=—F 18 + €307 + 4cs 0 o1 Ly + cyr Iy + 2649 1,6 + 2¢y 1,0
z 00  CS~al_____ ==
: 1t, 204 and 3" momentum
i compaction
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(Qq Normal form for perturb:

2

B Using the BCH formula, one can prove that the composition
of two maps with ¢ small can be written as (see slide 109)

efe9 = exp [:f+( 2k f)ngO(g )]

1 —¢€

Non-linear dynamics, CERN Accelerator School, November 2024
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2

B Using the BCH formula, one can prove that the composition
of two maps with ¢ small can be written as (see slide 109)

cter — o |if + (=1 ) g+ 00

1 —e:f:

B Consider a linear map (rotation) followed by a small
perturbation A — €1f2163f31
B We are seeking for transformation such that

N _ (I)M(I)_l _ G:F:€:f2:6:f3:€:_F:

Non-linear dynamics, CERN Accelerator School, November 2024
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(Qq Normal form for -(

2

1] Usmg the BCH formula, one can prove that the composition
of two maps with ¢ small can be written as (see slide 9)

e e’ = exp [:f + (1 _:J;:_:f:) g+ @(92):]

B Consider a linear map (rotatlon) followed by a small

perturbation Af — ¢ fa: f 3°

B We are seeking for transformatlon such that

N = DMD 1 = elief2igifaiei—

B This can be written as

N: €:f2:€_:f2:6:F:6:f2:€:f3:6:_F
:6:f2:6:6_1f2‘F—|—f3—F:_|_.“ F p— 1 f3 f :
__ p—iJ2:
_ P I P fs % ©

= B This will transform the new map to a rotation to leading
order

Non-linear dynamics, CERN Accelerator School, November 2024
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2

B Consider a linear map followed by an octupolg
M = e~ 50 JEE SR P
B The generating function has to be chosen such as to
make the following expressmn simpler

—if2r VP
@ )p L

Non-linear dynamics, CERN Accelerator School, November 2024
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mq Example: Octup

B Consider a linear map followed by an octupole

w 24
M = e 5% 197

— e f 2 4 '
B The generating function has to be chosen such as to
make the following expressmn simpler
(e7 /2 —1)F + I
B The simplest expression is the one that the angles are

eliminated and there is only dependence on the
action

Non-linear dynamics, CERN Accelerator School, November 2024
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2

mq Example: Oct

B Consider a linear map followid by an octupolg
M = e 58 TP gt = oifaiei
B The generating function has to be chosen such as to
make the following expressmn simpler

(e7 2 —1)F + I
B The simplest expression is the one that the angles are

eliminated and there is only dependence on the
action

- B We pass to the action angle variable (resonance

basis
) = V2J eT = 2 T ip

The perturbatlon is
ot = (hy +h )  =hT =ht +4h3 h_ +6h2 b2 +4h b3 + B

Non-linear dynamics, CERN Accelerator School, November 2024



2

eeeeeeeeeeeeeeeeeeeeeeee

B The term 647 h? = 247 is independent on the angles.
Thus we may choose the generating functions such that the
other terms are eliminated. It takes the form

1 [ R 43 h_  4hyh? h
F = top s T
16 \ 1 — edwv 1 — e2w 1 — e2w 1 — ediv

Non-linear dynamics, CERN Accelerator School, November 2024
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2

qu Example: Octup

B The term 6h2 h? =247 is 1ndependent on the angles.
Thus we may choose the generating functions such that the
other terms are eliminated. It takes the form

1 hi . 4h3 h_ N 4h i h3 N ht
16 1 — 64i1/ 1 — 622'1/ 1 — 622'1/ 1 — 642'1/
B The map is now written as

2, ..
M—e F: I/J—I—8J - F:

B The new effective Hamlltoman is dependmg only on the
actions and contains the tune-shift terms

F =

Non-linear dynamics, CERN Accelerator School, November 2024
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gx) Example: Oct

B The term 617 h? = 24J7 is 1ndependent on the angles.
Thus we may choose the generating functions such that the
other terms are eliminated. It takes the form

1 ( hi N 4h3 h_ N 4hih? N ht )
16 \ 1 — edwv 1 — e2w 1 — e2w 1 — ediv
B The map is now written as

32..
MzeFl/J—I—J - F:

2

F =

B The new effective Hamiltonian is depending only on the
actions and contains the tune-shift terms

B The generator in the original variables is written as

_ 614 [—5a* + 3p* + 62°p® + 42”p(2 cot(v) + cot(2v)) + 4ap” (2 cot(v) — cot(2v))]

B Constant values of the generator describe the trajectories in
phase space

Non-linear dynamics,%ERN Accelerator School, November 2024
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Introduction to

Truncated Power Series
Algebra (TPSA)
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‘ Y
de@ |avlor series from tra

B Let’s consider a tracked particle at position « and a small
deviation Ax. The Taylor series around this position is

2

0 “e(n) (4
fla+ Ax) = fla)+ 3 T g
n=1 ’
_ fa)+ 7 ff)mhr ! 2('“).&:;;2 g 3(“‘) Az ...

Non-linear dynamics, CERN Accelerator School, November 2024
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. Y
'de@, |aylor series c!

B Let’s consider a tracked particle at position « and a small
deviation Ax. The Taylor series around this position is

0 “e(n)(,
fla+ Azx) = f(a )—|—Zf ( )A:L‘“

2

n=1
, fo) f"(a) f”’( )
B By truncating we have f(a + Az) = Z /o nT

and the function f(Z) can be represented by the vector
(f(a), f'(@), f"(@),.... f™(a))
B This vector is a Truncated Power Series Algebra

B We need the derivatives f(n) () off(il? ) at ¢ with

f'(a) = fla+¢€) — f(®) which is numerically non-trivial
€ (small divisors, accuracy for
higher orders,...) 138
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m') Ditterential Algebra

B The basic idea is the automatic dlfferentlatlon of results
produced by a tracking code to provide the coefficients of a
Taylor series

2

Non-linear dynamics, CERN Accelerator School, November 2024
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“X) Differential Algek

B The basic idea is the automatic d1fferent1at10n of results
produced by a tracking code to provide the coefficients of a
Taylor series

2

B Consider a pair of real numbers (90, q1) and define
operations on a pair like

(QO7Q1) T (T07T1) — (QO —|—T0,(]1 +T1)
C- (Clqul) — (C°QO,C'Q1)
(Qm(h) ' (7“077“1) — (QO T0,q0 " T1 + q1 °7‘o)

Non-linear dynamics, CERN Accelerator School, November 2024
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(ﬁ.\') Differential Alg

B The basic idea is the automatic dlfferentlatlon of results
produced by a tracking code to provide the coefficients of a
Taylor series

2

B Consider a pair of real numbers (90, q1) and define
operations on a pair like

(90,q1) + (ro,7m1) = (g0 + 70, q1 + 71)
C- (CIO,Q1) — (C°Q0,C'Q1)
(QO>Q1) ' (7“077“1) — (QO T0,q0 " T1 + q1 °7“0)

and some ordering
(QO7Q1) < (7“077“1) if g <ry or (QO =79 and ¢ < 7“1)
(g0, q1) > (ro,m1) if qo>r9 or (go=r1r9 and ¢ > 1)

implying strange relations of the form
(0,0) < (0,1) < (r,0), Vr>0
(0,1)-(0,1) = (0,0) = (0,1) = +/(0,0)

Non-linear dynamics, CERN Accelerator School, November 2024
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2

B We define the differential umt € = , which is located
between 0 and any real number (1nf1mte81mally small)

B As(qo,0) is just a real number, we can define a real part and a
differential part

qo = R(q0,q1) and ¢ = D(qo,q1)
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CL.\') Ditferential Alg

2

B We define the differential unit € = 0 1) , which is located
between 0 and any real number (1nf1mtesimally small)

B As(qo,0) is just a real number, we can define a real part and a
differential part

o = R(qo;q1) and g1 =D(qo, q1)
B Using the previous rules we can show

(1,0) - (q0,91) = (g0, q1)

_ 1 q1
(QOac_Zl) 1:(q 9 2)

B A function acting on a pairis f(7) = R[f(z,q1)], Y @
B The differential is

D[f(z +¢)] =D[f((x,0) + (0,1))] = D[f (=, 1)] = f'(=)

Non-linear dynamics, CERN Accelerator School, November 2024
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2

m Consider the function f(z) = 2% + - . W1th the derivative
L 1
f'(x) =2z — — . For « = 2, we obtain (f(2), f'(2)) = (9, _5)

(Q’) Differential Alg ebra exa



de'e Differential Alg ebr :

eeeeeeeeeeeeeeeeeeeeeeee

2

B Consider the function f(z) =2+ = W1th the derivative

| X
f/(CU) — Qpr — ? . For x = 2, we obtain (f(2)7f,(2)) - (g’ %>

B Let’s use differential algebra, by substituting = — (z,1) = (2,1)
to the function and use the rules

f[(2: 1)] — (27 1)2 + (27 1)_1

|
:E
s
S
+
N
DO | —
|
=]
N

_ (g %f) = (), F'(2))

B We computed exactly the derivative, only by using algebra!
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B The operation can be extended to derivatives of order N by
considering that the pair becomes

(qO,l) — (qQ,l,0,0,...,O) with € = (0,1,0,0,...,0)

4 A
deoe, Higher orders ‘

The CERN A

B We can extend the operations as
(QO7Q17QQ7“'?QN)—|—(TO7T17T27“‘7TN> — (QO‘I"’“O,Ql+T1,q2‘|‘r27.--,QN‘|‘74N:
C'(C107611,Q27---7CIN) — (C'QOJC'QMC'QQw"?C'QN)

(QO7Q17QZ7°'°7QN) : (T07T17T27°"7TN) — (807817827"‘78]\7)

1 .
, 7!
with S; = g k!(i — k)!Qsz’—k
k=0

B For example (z,0,0,0,...,0)" = (2",0,0,0,...,0)
n+1
=
(0,1,0,0,...,0)" = (0,0,0,..., n! ,...,0)
(2,1,0,0,...,0)% = (2%,22,2,0,...,0)

(2,1,0,0,...,0)° = (2,327, 62,6,0,...,0) 146
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@ ] : i
[de’e Higher dimensio

B The operation can be extended to more variables
x=1(a,1,0,0,0...) € =(0,1,0,0,0,.))

2

px =(0,0,1,0,0..) ¢, =(0,0,1,0,0,.)

B With some modified multiplication rules
(oo, q10, qo1, G20, -.) - (roo, 10, 701> 720,..) = (So00, S10, S01, $20,--)

L m! n!
ith mn — " P'm—kn—
With S = ) Dk Tkt 7 m— I I (n = D!

k=0 [=0
» af af &/ #/
d ) = , , , , o e , b

B Using the formalism above, a truncated Taylor map with the
desired accuracy and to any order, directly from tracking
data
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'Jele OUMMAary

2

Natural way to represent motion in an accelerator is by using maps

Powerful tools to build them from straight-forward tracking
(TPSA)

Canonical (symplectic) transformations enable to move from
variables describing a distorted phase space to something simpler
(ideally circles)

The generating functions passing from the old to the new variables
are bounded to diverge in the vicinity of resonances (emergence of
chaos, see Lectures of NLD Phenomenology)

Calculating this generating function with canonical perturbation
theory becomes hopeless for higher orders

Lie transformations of accelerator maps enables derivation of the
generating functions in an algorithmic way, in principle to
arbitrary order

For real accelerator models, we have to rely on symplectic
integration, i.e. particle tracking and methods to analyse it (see
Lectures of NLD Phenomenology)
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(Q') Lagrangian for

d Describe motion of particles in g, coordinates
(n degrees of freedom) from time ¢, to time ¢,

2

It can be achieved by the Lagrangian function
L(Qla oy {n, q.la ) Qnat) Wlth(Qla R 7Q’n) the
generalized coordinates and (q1, - .-, ¢x) the
generalized velocities
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Jeole, Lagrangiai

d Describe motion of particles in g, coordinates
(n degrees of freedom) from time ¢, to time ¢,

It can be achieved by the Lagrangian function
L(q1,- -5 qnsq1s- -, Gn, t) with(q1,- - -, qn) the
generalized coordinates and (q1, - .-, ¢x) the
generalized velocities

A The Lagrangian is definedas L =T — V , i.e.
difference between kinetic and potential energy

dThe integral W = /L(qi, gi, t)dt | :
defines the action %
JdHamilton’s principle: system 1

evolves so as the action becomes
extremum (principle of stationary action)

Non-linear dynamics, CERN Accelerator School, November 2024
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Jele, Euler- Lagra &

OBy using Hamilton’s principle, i.e. 0W =0,
over some time interval ¢; and ¢, for two
stationary pointsdq(ty) = dq(t2) = 0 (see
appendix), the following differential

i equations for each degree of freedom are

: obtained, the Euler-Lagrange equations

g d0L 9L

:Zj dt 8 q.z 8@73 B

; JdIn other words, by knowing the form of the

- Lagrangian, the equations of motion can be
Z o
derived
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Jole, Lagrangian m

JFor a simple force law contained in a potential
function, governing motion among interacting
particles the Lagrangian is (or as Landau-Lifshitz
put it “experience has shown that...”)

L=T-V = Z mzqz V(gl; IR 7Qn)

1=1
4 For velocity independent potentials, Lagrange
equations become 9V

0q;

i.e. Newton’s equations.
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(Q') From Lagrangian to

2

0 Some disadvantages of the Lagrangian formalism:

- No uniqueness: different Lagrangians can lead to same
equations

-1 Physical significance not straightforward (even its basic
form given more by “experience” and the fact that it
actually works that way!)

- Note: Lagrangian is very useful in particle physics
(invariant under Lorentz transformations)
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Jee, From Lagrangi &

J Some disadvantages of the Lagrangian formalism:

No uniqueness: different Lagrangians can lead to same
equations

Physical significance not straightforward (even its basic
form given more by “experience” and the fact that it
actually works that way!)

Note: Lagrangian is very useful in particle physics
(invariant under Lorentz transformations)
d Lagrangian function provides in general 2 second
order differential equations (coordinate space)

d Advantage to move to system of 2n first order
differential equations, which are more
straightforward to solve (phase space)

Non-linear dynamics, CERN Accelerator School, November 2024
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2

(A') Derivation of Lag

JThe variation of the action can be written as

b2 2 (0L oL
oW = L(qg+9q,q+9q,t) — L(q,q,t dt:/ (—5 —|——,5'>dt
tl((q ¢,q+04,t) — L(q,41)) -\ 8g%1t 9%
[ Taking into account that §¢ = djtq, the 2nd part of the

integral can be integrated by parts giving

oL | t2 791, d [OL
— dt =
tl—l_/tl (0q dt<84)>5q ’

9"

The first term is zero because dq(t1) = dq(t2) =0
so the second integrant should also vanish,
providing the following differential equations for

each degree of freedom, the Lagrange equations
d oL 0L 0

dt 8(1@ B 8(__]1 B 156

oW =
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2

d The equations of motion can be derived from the
Hamiltonian following the same variational principle as for
the Lagrangian (“least” action) but also by simply taking the
differential of the Hamiltonian

<’ . aL f, aL 8L
dH = Zl?jd% + qidp; — a—cjft{% — 6’—q-d% — Edt
PR 2 Y4,
i 2
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m Derivation of Hami

0 The equations of motion can be derived from the
Hamiltonian following the same variational principle as for
the Lagrangian (“least” action) but also by simply taking the
differential of the Hamiltonian

d These are indeed 2n + 2 equations describing the motion in
the “extended” phase space (q;, - - -, Gn,D1s--->Pn>t, —H) 15

R OL OL
. dH =) pidi; + Gidp; — 8 — g i —
% or pz
- OH OH
% () 1 1 T O, - d 1 d 1 —dt
: (q,ps1 qup — Pida; d Zﬁpzp 50,05 +
é d By equatmg terms, Hamilton’s equations are derived
. 0H .  OH 0L  OH
g q; — 8pi y Pi — aq , It = o



SQ’) Examples of transform

2

A The transformation ) = —p , = ¢, which interchanges
conjugate variables is area preserving, as the Jacobian is
orP 0Q
oPQ) _|oap op|_ [0 —L)_4
olp.q) — |02 99 1 0
0q 0q
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A The transformation ) = —p , = ¢, which interchanges
conjugate variables is area preserving, as the Jacobian is
or  0Q
oPQ) _|ap op|_ [0 —1)_4
olp.q) — |02 99 1 0
0q 0q

1 On the other hand, the transformation from Cartesian to
polar coordinates q¢ = Pcos(@), p= Psin( isnot, since

8(q,p) :|—PSinQ P cos @ __p

cos () sin ()

Non-linear dynamics, CERN Accelerator School, November 2024
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S‘,\') Examples of tra

2

O The transformation ) = —p , = ¢, which interchanges
conjugate variables is area preserving, as the Jacobian is
or  0Q
oPQ) _|ap op|_ [0 —1)_4
d(p,q) or  9Q 1 0
0q 0q

[ On the other hand, the transformation from Cartesian to
polar coordinates ¢ = Pcos(), p = Psin() isnot, since

d(a.p) _ —Psin() Pcos(
0(Q,P) cos () sin ()

 There are actually “polar” coordinates that are canonical,
givenby ¢ = —V2PcosQ, p=+V2PsinQ for which

5 V2Psin() 2P cos()
o (q,z;) — cos @ sin ) =1
(Q,P) Nor: Nors )

=P
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The Relativistic
Hamailtonian for
electromagnetic fields

162



de @, Single-particle relativistic

The CERN Accelerator School

2

JdNeglecting self fields and radiation, motion can be
described by a “single-particle” Hamiltonian

H(x,p,t) = C\/(p — SA(x, t))2 + m?c? 4+ e®(x,t)
[ (z,y, 2) Cartesian positions
J p= (pa;’ Dy pz) conjugate momenta
Q A= (A,,A,,A,) magnetic vector potential

| (I) electric scalar potential

Non-linear dynamics, CERN Accelerator School, November 2024
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2

JdNeglecting self fields and radiation, motion can be
described by a “single-particle” Hamiltonian

o
d e @ Single-particle relativis

The CERN A

H(x,p,t) = C\/(p — SA(x, t))2 + m?c? 4+ e®(x,t)
[ (z,y, 2) Cartesian positions
J p= (px’ Dy pz) conjugate momenta
Q A= (A,,A,,A,) magnetic vector potential

| (I) electric scalar potential

dThe ordinary kinetic momentum vector is written
e
P=ymv=p—=A
C

with 'V the velocity vector and v = (1 — v?/c?)~!/2 the
relativistic factor

Non-linear dynamics, CERN Accelerator School, November 2024
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2
H(x,p,t) = C\/(p — SA(x, t))2 + m?c? 4+ e®P(x,t)

[ Itis generally a 3 degrees of freedom one plus time (i.e., 4
degrees of freedom)

®
d e @ Single-particle relativistic He

eeeeeeeeeeeeeeeeeeeeeeee

d The Hamiltonian represents the total energy

H=F =~vmc*+ed
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2
H(x,p,t) = \/(p — SA(x, t)) + m?c? 4+ e®P(x,t)

[ Itis generally a 3 degrees of freedom one plus time (i.e., 4
degrees of freedom)

Cm Single-particle relativist

d The Hamiltonian represents the total energy
H=F =~vmc*+ed
d The total kinetic momentum is
H2 1/2
P = ( > m202>
C
d Using Hamilton's equations

(x,p) = [(x,p), H]

it can be shown that motion is governed by Lorentz equations

Non-linear dynamics, CERN Accelerator School, November 2024

166



Jele) From Cartesian fo

It is useful (especially for rings) p g Feidemicon
to transform the Cartesian .~ -
coordinate system to the N
Frenet-Serret system moving ;
to a closed curve, with path length :

dThe position coordinates in the two systems are
connected by r =r¢(s) + Xn(s) + Yb(s) = zuy + yuy + 2u,

(1 The Frenet-Serret unit vectors and the12r derivatives

are defined as (t,n,b) = (%ro(s) —p(s)—ro( ),t x n)

d t 0 - p(S) 0 t
— [(n] =10 0 7($) n
- (b) (U 0 T<s>> (b)

with p(s) the radius of curvature and 7(s)the torsion
which vanishes in case of planar motion 167
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2

JdWe are seeking a canonical transformation between

(a,p) — (Q,P) or
(:E,y,Z,pm,py,pz) — (X,Y,S,Px,Py,PS)

@
deo @ From Cartesian to “cur

JThe generating function is

0Fs(p, 0Fs3(p,
(q,P) = —( nggQ)v ?b(gQ))

By using the relationship between the positions, the
generating function is

F5(p, Q) =—-p-r+F3(Q)=—-p-r

Non-linear dynamics, CERN Accelerator School, November 2024
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®
deo @ From Cartesian to “cu

dfor planar motion, the momenta are

X
P = (Px,Py,PS) — p-(n,b, (1 + ;)t)

2

dTaking into account that the vector potential is also

transtformed in the same way

X
(Ax, Ay,AS) = A-(Il,b, (1 -+ ;)t)

the new Hamiltonian is given by

mics, CERN Accelerator School, November 2024

'i?—[(Q,P,t) = C\/(PX — SAX)2 + (Py — SAY)Q +

Non-linear dyn
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®
deo @ Changing of the indepe !

It is more convenient to use the path lengths,
instead of the time as independent variable

2

d The Hamiltonian can be considered as having 4
degrees of freedom, where the 4th “position” is
time and its conjugate momentum is 3 = —H

Non-linear dynamics, CERN Accelerator School, November 2024
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®
(Q’) Changing of the i

4 It is more convenient to use the path lengths,
instead of the time as independent variable

d The Hamiltonian can be considered as having 4
degrees of freedom, where the 4th “position” is
time and its conjugate momentum is 3 = —H

dIn the same way, the new Hamiltonian with the
path length as the independent variable is just
Py = _H(X7Y7t7PX7PY7Pt7S) with

7 — _EAS—(1 4 L) \/(Pt +€(I))2 —m2c® — (Py — SAx)? — (Py — S Ay)?

c p(s) c c ) c

It can be proved that this is indeed a canonical
transformation

d Note the existence of the reference orbit for zero

vector potential, for which (X,Y, Px, Py, P,) = (0,0,0,0, P)
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g(x) Neglecting el

d Due to the fact that longitudinal (synchrotron)
motion is much slower than the transverse
(betatron) one, the electric field can be set to zero
and the Hamiltonian is written as

2

VL i ﬂ2_ 2.2 _ _ ¢ 2 _ _ ¢ 2
H— CAS <1+,0(S)> \/‘(C) m C, (Px CAX) (Py CAY)

f')2
(J The Hamiltonian is then written as

H = —ZAS — (1 - %) \/(P2 — (Py — ZAx)2 - (Py — ZAW

 If static magnetic fields are considered, the time
dependence is also dropped, and the system is

having 2 degrees of freedom + “time” (path length)
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2

d Due to the fact that total momentum is much larger
than the transverse ones, another transformation
may be considered, where the transverse momenta
are rescaled

(Q,P) — (a,p) or
(X7Y7t7PX7PY7Pt) = (jagﬂ?aﬁ:mﬁy?ﬁt):(X7Y7_Ct7

®
deoo, Momentum r

Px Py P

P’ P ch)

JThe new variables are indeed canonical if the
Hamiltonian is also rescaled and written as

— H _ T L, m2c? ~ - ~
H(x7y7t7paf:7py7pt) — — _eAs_ (1 + —> \/p% - _ (pa: — eAg;)Q — (py — GAy)2

Non-linear dynamics, CERN Accelerator School, November 2024

Py p(s) Ix0
: - 1
Wlth ( xaAyaAz) — H(ACINA?J?AS)
m?c? 1
and PO — 58’78 173



. °
de'e, Moving the refere

2

d Along the reference trajectory p; = 1 and
dt‘ aH‘ 1 Bo
P=F;, — 9p, P=P, Pto 3,

4 It is thus useful to move the reference frame to the
reference trajectory for which another canonical
transformation is performed

(@p) — (§p) or

o _ o r A A AN e oAz S—S80 1
(xayata xapyapt) = (xayatapmapyapt)_(x7y7t+ 50 7p$7py7pt BO)

Non-linear dynamics, CERN Accelerator School, November 2024
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. °
de'e, Moving the refe:

d Along the reference trajectory p,, = — and

dt _oH | Bo

u It is thus useful to move the reference frame to the
reference trajectory for which another canonical

transtormation is performed
(@p) = (@p) or

o A S—So . 1
(Z,9,t, Da, Dy, Pt) —  (2,9,t, Pu, PysDt) = (T, 79, T + —— B, , Doy Dy Pt — 50)

JThe mixed variable generating function is

OF, & Fs
(4, P) = ( 8(;1 b) 83 b)) prov1dmg
—_ A — A re SO A 1
F5(q,D) = Tpy + ypy + (¢ + 2 5 )(pe + %)

dThe Hamlltoman is then

1 ' L
TH(E, 9.t Doy Pys Pr) = Bo (50 +pr)—eA,— (1 + m) \/(ﬁt + %)2 TR (D — €Az)? — (Dy — eAy)?
175
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o
m Relativistic and transverse field a

eeeeeeeeeeeeeeeeeeeeeeee

=

. . B 1 ~ - P, — P,
J First note that pt:pt—ﬁ—:pt—pw: tP 0 =
and | =1t 0 |
dIn the ultra-relativistic limit gy -1, —— —0
and the Hamiltonian is written as 07
MLy 8) = (140) = (1425 (U002 = (o = )2 = (3, — e

where the “hats” are dropped for simplicity
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cm Relativistic and transve I
)

P, — P
Q First note that p; = p; — — = Py — Prop = ——— 2 =
50 Py
and | =¢ ,
dIn the ultra-relativistic limit gy -1, —— —0
and the Hamiltonian is written as 0
H(2,y, 1 Do, Py, 0) = (146)—e Ay~ (1 + %) \/(1 +6)% — (p2 — €As)? — (py — €Ay)?

where the “hats” are dropped for simplicity

JIf we consider only transverse field components,
the vector potential has only a longitudinal
component and the Hamiltonian is written as

A T
— —eA, — [ 14+ —— 1+ 6)2 — p2 — p2
SH(@, Y, 1, D, Dy, ) = (1 + 0) — €A, ( +p(8)>\/( +0)? —pz — p;

d Note that the Hamiltonian is non-linear even in the
absence of any field component (i.e. for a drift)! o
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2

@
m High-energy, larg

4 It is usetul for study purposes (especially for
finding an “integrable” version of the Hamiltonian)
to make an extra approximation

U For this, transverse momenta (rescaled to the
reference momentum) are considered to be much
smaller than 1, i.e. the square root can be expanded.

d Considering also the large machine approximation
r << p , (dropping cubic terms), the Hamiltonian
is simplified to
> T 1+0 A
H_p py,  x(1+ ) CA.
2(L+9)  p(s)

JThis expansion may not be a good idea, especially
for low energy, small size rings 178
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m Relativistic and transver

=

P, — P
3 First note that p; = p; — 5_ = Dy — Dro = tP ¢ =
and [ =1t 0 |
UIn the ultra-relativistic limit 8y -+ 1, —5— — 0
and the Hamiltonian is written as 0
H(@,y,1,pey Py, 0) = (14+0)—eAs— (1 + @) \/(1 +0)2 = (po — eAy)? — (py — e4y)?

where the “hats” are dropped for simplicity

JIf we consider only transverse field components, the
vector potential has only a longitudinal component
and the Hamiltonian is written as

A T
— —eA, — [ 14+ —— 1+ 6)2 — p2 — p2
SH(@, Y, 1, D, Dy, ) = (1 + 0) — €A, ( +p(s)>\/( +0)? —pz — p;

dNote that the Hamiltonian is non-linear even in the
absence of any field component (i.e. for a drift)! -
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2

Jele Magnetic multi

W From Gauss law of magnetostatics, a vector potential exist

V:-B=0 — JdJA: B=VXxXA
B Assuming transverse 2D field, vector potential has only one
component A.. The Ampere’ s law in vacuum (inside the
beampipe) V x B=0 — 3IV: B=-VV
B Using the previous equations, the relations between field
components and potentials are

3

£

S 3 oV 0A; 3 oV 0A,

T% T = = — = —_ Y = —

£ Ox oy = Y Oy oz |,

¢ i.e. Riemann conditions of an analytic function | iron
i

¢ Exists complex potential of z = = + iy  with re

£ power series expansion convergent in a circle X
=

¢ with radius |z| = r. (distance from iron yoke)

£

5

Z

Az + iy) = As(z,y) + iV (z,y) = Zﬁsn —Z n + ipin) (T + iy)"

n=1
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. °
OO Multipole expans

B From the complex potential we can derive the fields

2

. (9 - \n—1
B, +iB; = — O:U(A (x,y) +1V(z,y)) Zn n+ ipn)(x + iy)
B Setting b, = —n\,, a,=nu,
O
: : : 1
B, +iB, = E (bp, — tan)(x +1y)"
n=1
B Define normalized coefficients
b a
b/ n n 1 / — n n—1
n = 10-4B, 0  “n T 10-4B, ©

on a reference radius r,, 10 of the main field to get

| _ . + 1Y
B, +iB, =107%B, S (¥, —ial,)(— )"
= 0 D0~ i) ()

B Note: n’ = n — 1 is the US convention 181
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. °
deo @ Canonical perturba

2

B Expand term by term the Hamiltonian H(J(J, @), ¢(J, @), 0)
to leading order in € _ _

eaﬂo(J) 05:1(J, ¢, 0)
0T Op
M (J(J, @), (J,),0) = eHi(J, ) + O(€)
B The new Hamiltonian can also be expanded in orders of €
H:HO—I—EHl—I-...
B Equating the terms of equal orders in € , we obtain
1 Zero order Hy = Ho(J)

Ho(J(J, @) = Ho(J) + + O(€?)

) Firstorder H; = 951 (g(,g@,e) +w(J) - 951 (taf(’,;B,H) H(J,p)
OHy(J)

where the frequency vectoris (j ) = ~

Non-linear dynamics, CERN Accelerator School, November 2024
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(m Canonical pertu

‘B From the first order Hamiltonian, the angles have to be
eliminated. For this purpose, it can be split in two parts:

1\" _
Average part: (Hj)z = (%> %Hl(J,QE)dQE

Oscillating part: {H,} = Hy — (Hy) @
B The 1t order perturbation part of the Hamiltonian then

becomes

iy = P2 D o) BULBD (1 (T @) + (11T 0))

B Thus, the generating function should be chosen such that

the angle dependence is eliminated, for which

(D) = (. @)e and PUL2D 4 o) PO _ iy (7 g)

B The new Hamiltonian is a function of the new actions
H(J)=Ho(J)+e(Hi(J,p))s + O(e®) with the
new frequency vector

o(J) = agg /) = w(J) —|—€8<H1(8{1—7¢)>¢ + O(€%)

2
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(‘»\') Form of the gene

f—H

2

‘W The question that remains to be answered is whether a
generating function can be found that eliminates the angle
dependence

B The oscillating part of the perturbation and the generating
function can be expanded in Fourier series

(T, @)} = ZHlk Z(k &+pb) S ( Z Slk Z(k @+p0)

with k - (’0 — kl@l - 4+ kngpn
B Following the relationship for the angle elimination, the
Fourier coefficients of the generating function should

satisty _ Hip(J)
S1k(J) =1 =
D (@)
B Then, the generating function can be written as

N Hix(I) ikt 2
S(J,p)=J -+ el = !k P+r0) 4 O (e
(J,p)=J ¢ I;k-w(J)ﬂLp (¢?)

with k,p#0
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2

B Jt can be shown that at second order in perturbation theory
the Hamiltonian depending only on the actions can be

written _ 1 0%°H, (851 ) 2 N OH{ 051

(Aq Second order sext

B =G5 (B

B This can be simplified to Hy(J) = (

B The two terms are 8_H_1 _ K(s)

oJ 0¢ )¢
OH, 05,

oJ 8gb>
JY28(5)3/%(cos 3¢ + 3 cos @)

oJ 22
081 _ T2 TTC gy [08(@+ U(sT) — d(s) —mv) | cosB(6+(s) —w(s) — )]
00 22/, Ks(s)B(s) [ sin(7v) i sin(3mv) ]d

B The 279 order Hamiltonian is given by the angle-averaged
product of the last two terms.

B |t is quadratic in the sextupole strength and the new action.
The 2" order tune-shift is the derivative in the action

C s+C
D) = (G2 =~ [ sk [ K3

y lcos(gb +(s") —P(s) — wv) | cos 3(p +Y(s") —Y(s) — mv) ds/

sin(mv) sin(37v) 185
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2

B Expand both the perturbation and generating function in
Fourier series of the form

S1(J, ¢,0) = Z S1x(J, (9)6“‘“qg and {H:(J,9,0)} = ZH1k<j, §)eikd
k

k
B The equation relating the amplitudes is
051k

L kv S+ = —Hyy,
which can be solved yie@lding 00

¢ e k(0 —0—m)
Sk = Hqpe™\ " =077 q¢’
g sin(mkv) Jo th€
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2

B Expand both the perturbation and generating function in
Fourier series of the form

S1(J, ¢,0) = Z S1x(J, 9)6”“qg and {H:(J,9,0)} = ZHlk(j, 0)eik?
k k

@ Perturbation treatme
The CERN Accelerator School SeXtu . . 1 T

B The equation relating the amplitudes is

0S
'i k 14 Slk —|— Lk — _Hlk
which can be solved yie@lﬂ%ng 06
_ t " ikv(0'—0—1) 1p/
Stk 2sin(mkv) /9 Hxe a0

B Following the canonical perturbation procedure the
generating function is

0+2m
S, = Z l / Hlkeik[(b—l—u(G'—H—ﬂ)]del
2sin(mky) J,
k S ds’
o B(s')

we have

B For the sextupole, and letting #(s) =

j3/2 s+C

sin(¢ + ¥(s') —P(s) — mv) N sin3(¢ + ¥(s') —P(s) — mv) ds’

S =
! sin(7v) 3sin(37v) 187
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4 !
‘d @ @, Single resonance for accele

B The single resonance accelerator Hamiltonian
(Hagedorn (1957), Schoch (1957), Guignard (1976,
1978))

2

1 ky
H(Jata Jyv ¢m7 gbya S) — E(Vacjzc ‘|' Vny) _|' gn:C My RJ Jy2 COS(nbea: _|' n’yqby _|_ Qb() —p@)
: 190 _ .
with  9n,.n, € " = G5 kl,m;p

B F'rom the generating function

Er (@, by, jxv jyv $) = (Ng®z + nydy — p@)fx + ¢yjy
the relationships between old and new variables are

¢Ex — (na:¢a: + ny¢y —pe) , Jr = nxja:

Non-linear dynamics, CERN Accelerator School, November 2024

Gy = Py Jy = nyJz + Jy
B The following Hamiltonian is obtained
H(Jy, Jy, bz) = oy ¥ nyu%— P)Jot Jy + gnx,ny%(nxfm)% (nyJe + Jy) % cos(dy + dolss



o .
'deo¢ Resonance widt

B There are two integrals of motion
- The Hamiltonian, as it is independent on “time”

2

- The new action J as the Hamiltonian is independent on ¢y

B The two invariants in the old variables are written as:

J, J
I
Ng Ny

P P - p

co = (Vg — — ny)Jx + (vy — — ny>Jy + 200, n, 2 Jy* cos(Ngpdz + nydy + G — po)

B Two cases can be distinguished

J  ng ,n, have opposite sign, i.e. difference resonance, the motion is
the one of an ellipse, so bounded

2 ng , Ny have the same sign, i.e. sum resonance, the motion is the one
of an hyperbola, so not bounded

B These are first order perturbation theory considerations

B The distance from the resonance is obtained as

) ky—2
A = 9’”;%’"9 To T Jy 7 (kenade + kynyJy)
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[ )
(Q’) General accelerator Ham

B The general accelerator Hamiltonian is written as

H(x’ Y, Pz, Py; 8) — H0($, Y, Pz, Py, S) + Z hkx,ky (8)$kmyky
B The transverse coordinated can be expressed in action-angle

variables as

u(s) = Ju%(s) (cFP #0000 4 omilout o)
B The Hamiltonian in action-angle variables is

H/(Jx, Jy, ¢g;, ¢y) — HO(Jac) Jy) + Hl(J:Ba Jya ¢af;7 Qby)

2
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[ )
(Q') General accelerator Ha

B The general accelerator Hamiltonian is written as

H(x’ Y, Pz, Py; 8) — H0($, Y, Pz, Py, S) + Z hkx,ky (S>$kmyky
B The transverse coordinated can be expressed in action-angle

variables as

u(s) = Juiu(s) (cFP #0000 4 omilout o)
B The Hamiltonian in action-angle variables is

H (Jes Jys s 0y) = Ho(Ji, Jy) + Hi(Ji, Iy, b, y)
0 The integrable part Ho(J,, J,) = %(Vxe + vy Jy)

2

- The perturbation b
H1(Jz, Jy; day dy3 8) = Z Jﬁw/2‘]§y/2ZZgj,k,l,m(S)Bi[(j_k)¢m+(l—m)¢y]
ko ok il
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@
m General accelerator H

B The general accelerator Hamiltonian is written as

H(x’ Y, Pz, Py; 8) — HQ(ZE, Y, Pz, Py, S) + Z hkx,ky (S>$kmyky
B The transverse coordinated can be expressed in action-angle

variables as

u(s) = Juiu(s) (cFP #0000 4 omilout o)
B The Hamiltonian in action-angle variables is

H (Jes Jys s 0y) = Ho(Ji, Jy) + Hi(Ji, Iy, b, y)
0 The integrable part Ho(J,, J,) = %(Vxe + vy Jy)

2

- The perturbation b
H1(Jz, Jy; day dy3 8) = Z Jﬁm/2’]§y/2ZZgj,k,l,m(S)ei[(j_k)¢m+(l—m)¢y]
ko ok il

B The coefficients 9j.k,1,m(8) = Zi“jf% <k;x> (731/)ﬁlgm/z(8)5l;y/2(S)Bz‘[(j—k)om(s)+(1—m)9y(s)]
depend on the optics, with the indexes k., =j+k, k, =14+m
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m Resonance driving terms

2

B As the coefficients hy, , are periodic, the perturbation
can be expanded in Fourler ser1es

Hl(Jw7Jy7¢x7¢ya Z Jk /QJky/2S‘Y Y 9j.k.lm (.7 k)pz+(l—m)py —pb]

with the resonance driving terms

ko (K 11 s
9j.k,lmip = ( ) ( ly) — T j@{hk:m,k:y(8)6’;’““’/2(8)55@/2(5)@ [(G=F)¢a (s)+(1—m) ¢y (s)+pb]
J 2 ) 27T
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CL\') Resonance driving ..

2

B As the coefficients hy, , are perlodlc the perturbation
can be expanded in Founer serles

Hl(Jx>Jy>¢:ca¢y78) — Z Jk /2Jk /QS‘Y S‘ g] k,l,m (j k)¢x+(l m)(by p0]

ke, ky ] Il p=—o0
with the resonance driving terms

ko (K 11 s
9j.k,lmip = ( ) ( ly) — T 7{hkm,ky(3)5’;w/2(3)55y/2(3)6 [(G=F)¢a (s)+(1—m) ¢y (s)+pb]
J 2 ) 27T

B For Ng = J — k Ny = [ — ™M , resonance conditions
appear for N,V + Nyly = P
B Goal of accelerator design and correction systems is to
minimize the resonance driving terms
0 Change magnet design so that hy, x, (S) become smaller

- Introduce magnetic elements capable of creating a cancelling etfect

- Sort magnets or non-linear elements in a way that phase terms are
minimised

Non-linear dynamics, CERN Accelerator School, November 2024
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(A') Tune-shift and tu

B First order correction to the tunes is computed by the
derivatives with respect to the action of the average part of
perturbation. For a given term, hy, 1, (s)z"*y"* the leading

order correction to the tunes are
ky/2 ko Ky

Sy = 22 _Jy ZZQW %ei[(j—kwx—l-(l—m)ﬁby]
v 4T

Jk:/QJk/21k ky B
R e ZZ%M j{ HImREatImm) )

where §; k.i1.m is the average of ¢;k.1.m(s)around the ring.

2

B In the accelerator jargon if 0V 4 is independent of the
action, it is referred to as tune-shift, whereas, if it depends
on the action, it is called tune-spread (or amplitude
detuning)

B At first order, ov, , = 0, for odd multi-poles k. =j + k.
k, =l +m (trigonometric functions give zero averages). 195
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e |
Jele) General resonance 2

B The general resonance conditions is 70, Vg —+ NylVy — P
with order Tlg = Ty

BFor all the polynomial field terms of a 2m -pole, the excited
resonances (at first order) satisfy the condition 'y =+ Tby = M
but there are also sub-resonances for which 70 + Ty, < m
B For normal (erect) multi-poles, the resonances (at first
order) are (n.,ny) = (m,0), (m — 2,4+2),... whereas for skew
multi-poles (n.,ny) = (m —1,%1), (m — 3,+£3),. ..

Non-linear dynamics, CERN Accelerator School, November 2024




o
Jee, General reson: &)

B The general resonance conditions is 1,V + NylVy — P

with order My —+ Ty

BFor all the polynomial field terms of a 2m -pole, the excited
resonances (at first order) satisfy the condition 'y =+ Tby = M
but there are also sub-resonances for which 70 + Ty, < m
B For normal (erect) multi-poles, the resonances (at first
order) are (n.,ny) = (m,0), (m — 2,4+2),... whereas for skew
multi-poles (nz,ny) = (m —1,%£1), (m — 3,£3),...

BIf perturbation is large, all resonances
can be potentially excited

B The resonance conditions form lines ,,
in frequency space and fill it up as the
order grows (the rational numbers
form a dense set inside the real 02|
numbers), but Fourier amplitudes

should also decrease K

0% k

I 73T A 74

g a———
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@
deo @ Systematic and ra
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B These are called
systematic resonances

B Practically, any (linear)
lattice perturbation breaks
super-periodicity and any
random resonance can be

excited
B(Careful choice of the

working point is necessary

B If lattice is made outof NV

Yertical Tune

6.45

2

identical cells, and the
perturbation follows the same periodicity, resulting in
a reduction of the resonance conditions to the ones
satisfying Ny Vg + Nyly = JIN
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'de'e Lxample: The I i

The CERN Accelerator School

2

B Consider two identical sextupoles separated by a beam line

represented by a map K

B The sextupole map can be represented at second order as
52 _ 6—%L31HdI€—LsIHsie—%Lsini

. . e L 3 2
with the sextupole effective Hamiltonian Hs = 6/@2(33‘ — 3zy”)
and H ; the drift Hamiltonian

Non-linear dynamics, CERN Accelerator School, November 2024




(f,\') Example: The —I

The CERN A

2

B Consider two identical sextupoles separated by a beam line

represented by a map K

B The sextupole map can be represented at second order as
82 _ 6—%L31HdI€—LsIHsie—%Lsini

. . e 1, 3 2
with the sextupole effective Hamiltonian Hs = 6k2($ — 3ay”)
and H ; the drift Hamiltonian

B The total map can be approximated at 2" order by

. . . ey . ] 1 . .
M — SRS ~ S2R82 p— 6—%LS'Hd'e_LS'HS'Re_LS'HS'6_§L3-Hd-

with the map R = e~ 3LsHaip —5Ls:Ha:
S~ S

-

201
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dee Lxample: The —I tra

B Inserting the identity RR ™' =7, we have

2

M%e——L :Hg: 7%72 1,—Ls:H, Re—L :Hs: ,—5Ls:Ha:

B The similarity transformation can be used
— : i 7 1 :
R 16 LS.]'—IS.72:6 L,R " Hg:

B The map is then rewritten as

<
2

e 2

Non-linear dynamics, CERN Accelerator School, November 2024
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dee Lxample: The —

B Inserting the identity RR~' = Z, we have

1 . - _ . - : N . .
M =~ e ZLS'Hd'RR 16 LS.HS.736 LS.HS.6 sLs:Hyg:

B The similarity transformation can be used

2

_ _ . . = _ o —1 .
R 16 LS.]‘—IS.72/:6 L,R " Hg:

B The map is then rewritten as

_ 1 . L= 71 p-1 A 1 . i
M%fi 2LS.Hd.R€ LS:.R H . Yo LL{—I__Je LS.Hd.

— —1
O If the map R is chosen such that —R H s — H S

r RH, = —H,_ sothat

19 LT - T, K.
e L R~ Hg: ‘o —Ls:Hg: :6LS.HS.€ Ls:Hg: — 7
B In that way, the sextupole non-linearity is getting

eliminated in the final map
17 .7, = _ 171 .17, T - CET -
M ~ €—§LS.H(1.R€—§LS.H(1. — B—LS.Hd.Re—LS.H%é
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[de'e Example: The I

2

B Inspecting the form of H, (odd in ' and evenin {y), this
can be achieved if the map is such that

Rr = —=x, Rps = —Pq, Ry — LY, 7§“py — LDy

B In matrix form this can be written as

-1 0 0 0 COS by + Qg SIN iy b, sin i, 0 0
B 0O -1 0 01 —Cg SIN Uy COS [by — Qg SIN [iy 0 0
0 0 £1 0 0 0 COS [hy + Gy SIN [iy by Sin fiy
0 0 0 =1 0 0 —Cy SIN [y COS Ly — (g SIN [Uy,

B The horizontal part of the matrix is —Z5 and the vertical
partis £Z5, which is obtained for phase advances

po = (2ng + 1), fy = TyT

B This is why this beam line is called a -I-transformer

Non-linear dynamics, CERN Accelerator School, November 2024
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2

B Symplectic integrators with positive steps for Hamiltonian
systems [f — A + ¢B with both 4 and B integrable were
proposed by McLachlan (199)).

m Laskar and Robutel (2001) derived all orders of such

Integrators

@ . .
'deo Modern symplectic

m Consider the formal solution of the Hamiltonian system

written 1n the Lie representation
L t" o Ly -
)= — Ly7(0) = et 7(0).
n>0
B A symplectic integrator of order 1 from ¢ to { + 7

consists of approximating the Lie map ¢™l# = ¢7(LatLes)
by products of e 4and e®TleB § =1, ... nwhich
integrate exactly A and B over the time-spans C;7 and d; T

Non-linear dynamics, CERN Accelerator School, November 2024

m The constants ¢; and d; are chosen to reduce the error 205




CA') SABA,C integrat

“mThe SABA, integrator is written as
SABA, = eclTLA diTLep eCZTLA eleLeB oC1 7L A

1 1 1 1
with ¢ = (-] e=—, d=3

V3 V3’ 2
m When{{A, B}, B} isintegrable, e.g. when 4 is quadratic in

momenta and B depends only in positions, the accuracy of

2

?

the integrator is improved by two small negative steps
SABA,C = ¢~ 7 € 5Li{a.n).5) (SABAQ) —T°€ 5L{A,B},B)
with c:(2—f)/24 '

B The accuracy of SABA,C is one
order of magnitude higher than
the Forest-Ruth 4% order scheme

m The usual “drift-kick” scheme -1-0

corresponds to thle 2nd Ierder integ M 2 1 08 08 04 02 o
_ 5La_ TLcp _ 5LA log10
SABA; = ez2%4¢ ez A, 0g10(s)

log10(AE/E)

5
6
-7
8
9
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7

Lo [m]

T

004 0.6
(Kol [m™2]

(a)

0.08

Lq [m]

0.04
[Kol [m™2]

(d)

0.06 0.08

o(‘:‘l’:)[csmm - o(a;j’:)[vmﬂ

o
)[CSABAzl = o(%i’)[vm;]

|
(G

7

Lo [m]

0.02

004  0.06
[Ka| [m™~2]

(b)

0.08 0.10

Lq [m]

0.02

0.04 0.06
Kol Im2]

©)

0.08 0.10

SABA,C integrator

) [TEAPOT;]

9Qx
9)x

e
o

s
)[C:ABA;] = o(

9Qx
3)x

5
e
o

)[CSABAZ] - O(%)[TEAPOT;]

aQ,
a)y

Lo [m]

|Ko| [m~2]

(©)

Lq [m]

0.02 0.04 0.06

[Ko| [m™=2]

03]

0.08 0.10

A

) [TEAPOT;]

9Qx
d)x

)[CSABA4] = o(

9Qx

)x

o

) [TEAPOTSs]

aQy
9y

)[CSABA4] - 0(

aQy
)y

m From 1 to several orders of magnitude better precision
of SABA_C with respect to classical integrators
K. Skoufaris et al. PRAB 2022
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® :
'de @, Graphical resonance

2

B |t is possible by constructing the one turn map to

built the generating (sometimes called
itk I+m

“distortion”) function F, ~ Y fu, Jo? J, 2 e imm
Jkim
B For any resonance al/, —+ bq — €, and setting

(% jklm = 0, the associated part of the functions is
Fap) & Z Jikim Jz J2

7kim
Jtk+l+m<n
j+k=a , l+m=b

School, November 2024
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CA') Normal forms for

B In the LHC at injection (450
GeV), beam stability is
necessary over a very large
number of turns (107)

)

(7,0

0.7 1

0.6 1

0.5 4

o With “warm” quad. errors B Stability is reduced from
random multi-pole

0.4 1 . 7] ”
o Without “warm™ quad. errors

Average A.R.D. of resonances

S 08 : : : :
S 20 imperfections mainly in the
g GO e super-conducting magnets
4 0.1 - “1e .
2 B Area of stability (Dynamic
g ao 002 @) aperture - DA) computed with
7 Resonances particle tracking for a large
5 number of random magnet
q-) It . . .
3 DA LHC Version error distributions
~ | Phase Type (o) 1 . 5 .
5 Nominal || Target Numerical tool based on
g Warm Quads | Average | 10.0 9.1 || 2l .
g 150 switched ON | Minimum " 8.5 (74 )| 86 normal form anal}’515 (GRR)
- Warm Quads | Average I | TZL | permitted identification of DA
= switched OFF | Minimum [ 9.6 [ (10.3 ) [[ (11.3 ) d . - th
: Worm Quads | Average [ 111 113 — £e U.Ctlf,)n reason (errors in the
= 450 switched ON | Minimum | 9.5 9.2 11.4 warm quadrupoles)
§ ? Warm Quads Average 11.4 12.4 13.8
“ switched OFF | Minimum | 10.1 10.7 12.3 209



