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Copyright statement and speaker’s release for video publishing

◼ The author consents to the photographic, audio and video recording

of this lecture at the CERN Accelerator School. The term “lecture”

includes any material incorporated therein including but not limited to

text, images and references.

◼ The author hereby grants CERN a royalty-free license to use his image

and name as well as the recordings mentioned above, in order to post

them on the CAS website.

◼ The material is used for the sole purpose of illustration for teaching or

scientific research. The author hereby confirms that to his best

knowledge the content of the lecture does not infringe the copyright,

intellectual property or privacy rights of any third party. The author has

cited and credited any third-party contribution in accordance with

applicable professional standards and legislation in matters of attribution.
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Non-linear dynamics

Symplectic 

maps

Hamiltonian 

for each 

element

Particle 

Tracking

Perturbation theory, 

normal forms

Truncated Power 

Series Algebra

Analysis of chaotic 

motion

(Frequency Map 

Analysis)

Dynamic 

aperture
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Content of lecture I
◼Non-linear effects and their impact

◼Reminder of Lagrangian and 
Hamiltonian formalism, canonical 
transformation, and symplecticity

◼The relativistic Hamiltonian for E/M 
fields

◼Canonical perturbation theory and its 
limitations
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Non-linear effects
◼ Non-linear magnets, such as 

chromaticity sextupoles 
(especially in low emittance 
rings), octupoles,…

◼ Magnet imperfections and 
misalignments

◼ Insertion devices (wigglers, 
undulators) for synchrotron 
radiation storage rings

◼ Magnet fringe fields 
(especially in high-intensity 
rings)

◼ Power supply ripple
◼ Ground motion (for e+/e-)
◼ Electron (Ion) cloud
◼ Beam-beam effect (for 

colliders)
◼ Space-charge effect (especially 

in high-intensity ring)
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Non-linear effects affect performance
◼ Non-linear magnets, such as 

chromaticity sextupoles 
(especially in low emittance 
rings), octupoles,…

◼ Magnet imperfections and 
misalignments

◼ Insertion devices (wigglers, 
undulators) for synchrotron 
radiation storage rings

◼ Magnet fringe fields 
(especially in high-intensity 
rings)

◼ Power supply ripple
◼ Ground motion (for e+/e-)
◼ Electron (Ion) cloud
◼ Beam-beam effect (for 

colliders)
◼ Space-charge effect (especially 

in high-intensity rings)

◼ Performance impact
❑ Reduced injection efficiency 
❑ Particle losses causing

◼ Reduced intensity and beam 
lifetime

◼ Radio-activation (equipment 
maintenance and lifetime)

◼ Super-conducting magnet quench
◼ Reduced machine availability

❑ Emittance increase
❑ Reduced number of bunches, 

increased crossing angle, affecting 
luminosity (for colliders)

❑ Allow to damp instabilities (see 
lecture on “Landau damping”)

❑ Can be used for beam extraction
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…but also cost
◼ Performance impact

❑ Reduced injection efficiency 
❑ Particle losses causing

◼ Reduced intensity and beam 
lifetime

◼ Radio-activation (equipment 
maintenance and lifetime)

◼ Super-conducting magnet quench
◼ Reduced machine availability

❑ Emittance increase
❑ Reduced number of bunches, 

increased crossing angle, affecting 
luminosity (for colliders)

❑ Allow to damp instabilities (see 
lecture on “Landau damping”)

❑ Can be used for beam extraction

◼ Cost issues
❑ Magnet field quality, alignment 

tolerances
❑ Number of magnet corrector, 

power convertor families and 
specifications 

❑ Design of collimation system
❑ Operational efficiency (energy)

◼ Non-linear magnets, such as 
chromaticity sextupoles 
(especially in low emittance 
rings), octupoles,…

◼ Magnet imperfections and 
misalignments

◼ Insertion devices (wigglers, 
undulators) for synchrotron 
radiation storage rings

◼ Magnet fringe fields 
(especially in high-intensity 
rings)

◼ Power supply ripple
◼ Ground motion (for e+/e-)
◼ Electron (Ion) cloud
◼ Beam-beam effect (for 

colliders)
◼ Space-charge effect (especially 

in high-intensity rings)
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Reminder of 

Hamiltonian formalism
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Hamiltonian formalism
❑ The Hamiltonian of the system is defined as the Legendre

transformation of the Lagrangian

where the generalised momenta are 
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Hamiltonian formalism
❑ The Hamiltonian of the system is defined as the Legendre

transformation of the Lagrangian

where the generalised momenta are 

❑ The generalised velocities can be  expressed as a function of 
the generalised momenta if the previous equation is 
invertible, and thereby define the Hamiltonian of the system
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12

Hamiltonian formalism
❑ The Hamiltonian of the system is defined as the Legendre

transformation of the Lagrangian

where the generalised momenta are 

❑ The generalised velocities can be  expressed as a function of 
the generalised momenta if the previous equation is 
invertible, and thereby define the Hamiltonian of the system

❑ Example: consider 

❑ From this, the momentum can be determined as 

which can be trivially inverted to provide the Hamiltonian  
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Hamilton’s equations
❑The equations of motion can be derived 

from the Hamiltonian following the 
variational principle of “stationary” action 
but also by simply taking the differential of 
the Hamiltonian (see appendix) 
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14

Hamilton’s equations
❑The equations of motion can be derived 

from the Hamiltonian following the 
variational principle of “stationary” action 
but also by simply taking the differential of 
the Hamiltonian (see appendix) 

❑These are indeed equations describing 
the motion in the “extended” phase space
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Properties of Hamiltonian flow

❑ The variables are called 
canonically conjugate (or canonical) and define the 
evolution of the system in phase space

❑ These variables have the special property that they 
preserve volume in phase space, i.e. satisfy the 
well-known Liouville’s theorem

❑The variables used in the Lagrangian do not 
necessarily have this property
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16

Properties of Hamiltonian flow

❑ The variables are called 
canonically conjugate (or canonical) and define the 
evolution of the system in phase space

❑ These variables have the special property that they 
preserve volume in phase space, i.e. satisfy the 
well-known Liouville’s theorem

❑The variables used in the Lagrangian do not 
necessarily have this property

❑Hamilton’s equations can be written in vector form 
with

and 

❑The matrix  is called the 

symplectic matrix
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Poisson brackets
❑Crucial step in study of Hamiltonian systems is 

identification of integrals of motion

❑ Consider  a time dependent function of phase 
space. Its time evolution is given by 

where             is the Poisson bracket of     with 
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18

Poisson brackets
❑Crucial step in study of Hamiltonian systems is 

identification of integrals of motion

❑ Consider  a time dependent function of phase 
space. Its time evolution is given by 

where             is the Poisson bracket of     with 

❑If a quantity is explicitly time-independent and its 
Poisson bracket with the Hamiltonian vanishes (i.e. 
commutes with the    ), it is a constant (or integral) 
of motion (as an autonomous Hamiltonian itself)
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Poisson brackets’ properties
❑From the definition, and for any three given 

functions, the following properties can be shown 
bilinearity

anticommutativity

Jacobi’s identity

Leibniz’s rule

❑Poisson brackets operation satisfies a Lie algebra
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20

Canonical 

transformations
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Canonical Transformations

❑ Find a function for transforming the Hamiltonian from 
variable           to           ,  so system becomes simpler to study

❑ Transformation should be canonical (or symplectic), so that 
Hamiltonian properties (phase-space volume) are preserved
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Canonical Transformations

❑ Find a function for transforming the Hamiltonian from 
variable           to           ,  so system becomes simpler to study

❑ Transformation should be canonical (or symplectic), so that 
Hamiltonian properties (phase-space volume) are preserved

❑ These “mixed variable” generating functions are derived by

❑ A general non-autonomous Hamiltonian is transformed to
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Canonical Transformations

❑ Find a function for transforming the Hamiltonian from 
variable           to           ,  so system becomes simpler to study

❑ Transformation should be canonical (or symplectic), so that 
Hamiltonian properties (phase-space volume) are preserved

❑ These “mixed variable” generating functions are derived by

❑ A general non-autonomous Hamiltonian is transformed to

❑One generating function can be constructed by the other 
through Legendre transformations, e.g. 

with the inner product define as              
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Preservation of Phase Volume
❑ A fundamental property of canonical transformations is the 

preservation of phase space volume

❑ This volume preservation in phase space can be represented 
in the old and new variables as
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25

Preservation of Phase Volume
❑ A fundamental property of canonical transformations is the 

preservation of phase space volume

❑ This volume preservation in phase space can be represented 
in the old and new variables as

❑ The volume element in old and new variables are related 
through the Jacobian
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Preservation of Phase Volume
❑ A fundamental property of canonical transformations is the 

preservation of phase space volume

❑ This volume preservation in phase space can be represented 
in the old and new variables as

❑ The volume element in old and new variables are related 
through the Jacobian

❑ These two relationships imply that the Jacobian of a 
canonical transformation should have determinant equal to 
1
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The Accelerator ring 

Hamiltonian
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Single-particle relativistic Hamiltonian

❑ It is generally a 3 degrees of freedom one plus time (i.e., 4 
degrees of freedom)

❑ The Hamiltonian represents the total energy
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Single-particle relativistic Hamiltonian

❑ It is generally a 3 degrees of freedom one plus time (i.e., 4 
degrees of freedom)

❑ The Hamiltonian represents the total energy

❑ The total kinetic momentum is

❑ Using Hamilton's equations

it can be shown that motion is governed by Lorentz equations
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Canonical transformations and approximations

❑Summary of canonical transformations and 
approximations for simplifying Hamiltonian 
❑ From Cartesian to Frenet-Serret (rotating)     

coordinate system (bending in the horizontal plane), 
useful for rings

s

Particle trajectory

ρ

n

b

t

x

y

φ
r0

r
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Canonical transformations and approximations

❑Summary of canonical transformations and 
approximations for simplifying Hamiltonian 
❑ From Cartesian to Frenet-Serret (rotating)   

coordinate system (bending in the horizontal plane), 
useful for rings

❑ Changing the independent variable from time
to the path length 

❑ The Hamiltonian can be considered as having 4 
degrees of freedom, where the 4th “position” is time
with conjugate momentum or  

Coordinate 
tranformations
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Canonical transformations and approximations

❑Summary of canonical transformations and 
approximations for simplifying Hamiltonian 
❑ From Cartesian to Frenet-Serret (rotating)   

coordinate system (bending in the horizontal plane), 
useful for rings

❑ Changing the independent variable from time          
to the path length 

❑ Electric field set to zero, as longitudinal
(synchrotron) motion is much slower than   
transverse (betatron) one

❑ Consider static and transverse magnetic fields

Coordinate 
tranformations

Field 
approximations
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Canonical transformations and approximations

❑Summary of canonical transformations and 
approximations for simplifying Hamiltonian 
❑ From Cartesian to Frenet-Serret (rotating)   

coordinate system (bending in the horizontal plane), 
useful for rings

❑ Changing the independent variable from time          
to the path length 

❑ Electric field set to zero, as longitudinal
(synchrotron) motion is much slower than   
transverse (betatron) one

❑ Consider static and transverse magnetic fields
❑ Rescale the momentum with the reference one and 

move the origin to the periodic orbit
❑ For the ultra-relativistic limit

the Hamiltonian becomes 

with and

Coordinate 
tranformations

Field 
approximations
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High-energy, large ring approximation

❑ It is useful for study purposes (especially for 
finding an “integrable” version of the Hamiltonian) 
to make an extra approximation

❑ For this, transverse momenta (rescaled to the 
reference momentum) are considered to be much 
smaller than 1, i.e. the square root can be expanded.
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35

High-energy, large ring approximation

❑ It is useful for study purposes (especially for 
finding an “integrable” version of the Hamiltonian) 
to make an extra approximation

❑ For this, transverse momenta (rescaled to the 
reference momentum) are considered to be much 
smaller than 1, i.e. the square root can be expanded.

❑ Considering also the large machine approximation
, (dropping cubic terms), the Hamiltonian 

is simplified to  

❑This expansion may not be a good idea, especially 
for low energy, small size rings 
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General non-linear Accelerator 

Hamiltonian
◼ Considering the general expression of the the longitudinal 

component of the vector potential is (see appendix)
❑ In curvilinear coordinates (curved elements)

❑ In Cartesian coordinates

with the multipole coefficients being written as

◼ The general non-linear Hamiltonian can be written as 

with the periodic functions

and
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Magnetic element Hamiltonians

◼ Dipole:

◼ Quadrupole:

◼ Sextupole:

◼ Octupole:
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Linear magnetic fields
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Linear magnetic fields 
◼Assume a simple case of linear transverse magnetic 

fields, 

❑ main bending field 

❑ normalized 
quadrupole gradient

❑ magnetic rigidity
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Linear magnetic fields 
◼Assume a simple case of linear transverse magnetic 

fields, 

❑ main bending field 

❑ normalized 
quadrupole gradient

❑ magnetic rigidity

◼ The vector potential has only a longitudinal 
component which in curvilinear coordinates is

◼ The previous expressions can be integrated to give
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The integrable Hamiltonian
◼ The Hamiltonian for linear fields can be finally written as

◼ Hamilton’s equation are 
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The integrable Hamiltonian
◼ The Hamiltonian for linear fields can be finally written as

◼ Hamilton’s equation are 

and they can be written as two second order uncoupled 
differential equations, i.e. Hill’s equations (see Transverse 
Dynamics lecture)

with the usual solution for 
and
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Action-Angle Variables
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Action-angle variables
◼ There is a canonical transformation to some optimal  set of 

variables which can simplify the phase-space motion 

◼ This set of variables are the action-angle variables

◼ The action vector is defined as the integral     
over closed paths in phase space.
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Action-angle variables
◼ There is a canonical transformation to some optimal  set of 

variables which can simplify the phase-space motion 

◼ This set of variables are the action-angle variables

◼ The action vector is defined as the integral     
over closed paths in phase space.

◼ An integrable Hamiltonian is written as a function of only 
the actions, i.e. . Hamilton’s equations give

i.e. the actions are integrals of motion and the angles are 
evolving linearly with time, with constant frequencies 
which depend on the actions

◼ The actions define the surface of an invariant torus, 
topologically equivalent to the product of circles 
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Harmonic oscillator revisited
◼ The Hamiltonian for the harmonic oscillator can be written as  

with the canonical position and momentum

◼ From definition of the action

with                      the position extrema, obtained for    ,          . 
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Harmonic oscillator revisited
◼ The Hamiltonian for the harmonic oscillator can be written as  

with the canonical position and momentum

◼ From definition of the action

with                      the position extrema, obtained for    ,          . 

◼ The Hamiltonian in these new variables 

◼ The phase is found by Hamilton’s equations as                     

and hence 

◼ The action is ,  i.e.                                 

an integral of motion.
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Harmonic oscillator revisited
◼ Another way to calculate the action is through canonical 

transformation using a generating function

◼ First, observe from solution of harmonic oscillator that   

relationship already connecting phase with old variables
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Harmonic oscillator revisited
◼ Another way to calculate the action is through canonical 

transformation using a generating function

◼ First, observe from solution of harmonic oscillator that   

relationship already connecting phase with old variables

◼ Using first generating function                

◼ By integrating, we obtain

◼ New momentum conjugate to the phase is given by

i.e. exactly the same relationship as with the previous 
method.



N
o

n
-l

in
ea

r 
d

y
n

am
ic

s,
 C

E
R

N
 A

cc
el

er
at

o
r 

S
ch

o
o

l,
 N

o
v

em
b

er
 2

02
4

50

Accelerator Hamiltonian in action-angle 

variables
◼ Considering on-momentum motion, the Hamiltonian can be 

written as

◼ As for harmonic oscillator, use Courant-Snyder solutions to 
build generating function from original to action-angles
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Accelerator Hamiltonian in action-angle 

variables
◼ Considering on-momentum motion, the Hamiltonian can be 

written as

◼ As for harmonic oscillator, use Courant-Snyder solutions to 
build generating function from original to action-angles

◼ The old variables with respect to actions and angles are 

and the Hamiltonian takes the form
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Normalised coordinates

◼ The transformation to normalized coordinates 

or 

transforms motion to simple rotations.
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Normalised coordinates

◼ The transformation to normalized coordinates 

or 

transforms motion to simple rotations.

◼ In the present coordinates, the phase is not a linear function

◼ A further transformation will be needed to eliminate the 

``time” dependence, by “averaging” (integrating) the 

previous Hamiltonian over one turn (Floquet

transformation) 
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Normalised coordinates

◼ The transformation to normalized coordinates 

or 

transforms motion to simple rotations.

◼ In the present coordinates, the phase is not a linear function

◼ A further transformation will be needed to eliminate the 

``time” dependence, by “averaging” (integrating) the 

previous Hamiltonian over one turn (Floquet

transformation) 

◼ The 1-turn Hamiltonian is

◼ The motion is the one of two linearly independent harmonic 

oscillators with frequencies the tunes
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Canonical perturbation 

theory
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Canonical perturbation theory
◼ Consider a general Hamiltonian with     degrees of freedom 

where the non-integrable part                      is       -periodic 
on the angles     and the “time”

◼ Provided that      is sufficiently small, tori should still exist 
but they are distorted

◼ We seek a canonical transformation that could “straighten 
up'' the tori, i.e. it could transform the non-integrable part 
of the Hamiltonian (at first order in   ) to a function only of 
some new actions plus higher orders in 
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Canonical perturbation theory
◼ Consider a general Hamiltonian with     degrees of freedom 

where the non-integrable part                      is       -periodic 
on the angles     and the “time”

◼ Provided that      is sufficiently small, tori should still exist 
but they are distorted

◼ We seek a canonical transformation that could “straighten 
up'' the tori, i.e. it could transform the non-integrable part 
of the Hamiltonian (at first order in   ) to a function only of 
some new actions plus higher orders in 

◼ This can be performed by a mixed variable close to identity 
generating function
for transforming old variables to new ones

◼ In principle, this procedure can be carried 
to arbitrary powers of the perturbation 
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Canonical perturbation theory
◼ By the canonical transformation equations (slide 19), the 

the old action and new angle can be also represented by a 
power series in 

or
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Canonical perturbation theory
◼ By the canonical transformation equations (slide 23), the 

the old action and new angle can be also represented by a 
power series in 

or

◼ The previous equations expressing the old as a function of 
the new variables assume that there is possibility to invert
the equation on the left, so that becomes a 
function of the new variables 

◼ The new Hamiltonian is then

◼ The second term is appearing because of the “time” 
dependence  through  
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Form of the generating function
◼ The question is what is the form of the generating function 

that eliminates the angle dependence

◼ The procedure is cumbersome (see appendix for details), 
but here is the final result, 

with the frequency vector
and the integers
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Form of the generating function
◼ The question is what is the form of the generating function 

that eliminates the angle dependence

◼ The procedure is cumbersome (see appendix for details), 
but here is the final result, 

with the frequency vector
and the integers

◼ If the denominator vanishes, i.e. for the resonance 
condition , the Fourier series 
coefficients (driving terms) become infinite

◼ It actually implies that even at first order in the 
perturbation parameter and in the vicinity of a resonance, 
it is impossible to construct a generating function for 
seeking some approximate integrals of motion
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Problem of small denominators
◼ In principle, the technique works for arbitrary order, but the 

disentangling of variables becomes difficult even to 2nd order!!!

◼ The solution was given in the late 60s by introducing the Lie 
transforms (e.g.  see Deprit 1969), which are algorithmic for 
constructing generating functions and were adapted to beam 
dynamics by Dragt and Finn (1976)
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Problem of small denominators
◼ In principle, the technique works for arbitrary order, but the 

disentangling of variables becomes difficult even to 2nd order!!!

◼ The solution was given in the late 60s by introducing the Lie 
transforms (e.g.  see Deprit 1969), which are algorithmic for 
constructing generating functions and were adapted to beam 
dynamics by Dragt and Finn (1976)

◼ On the other hand, the problem of small denominators due to 
resonances is not just a mathematical one. The inability to 
construct solutions close to a resonance has to do with the un-
predictable nature of motion and the onset of chaos

◼ KAM theory (see appendix) developed the mathematical 
framework into which local solutions could be constructed, 
provided some general conditions on the size of the perturbation 
and the distance of the system from resonances are satisfied

◼ Very difficult though to apply directly this theorem to realistic 
physical systems, such as a particle accelerator
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Example: Perturbation 

treatment of a sextupole
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Perturbation treatment for a sextupole

◼ Consider the simple case of a periodic sextupole 

perturbation and restrict the study only to one plane. The 

Hamiltonian is written as, 

where            and            are periodic functions of time.
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Perturbation treatment for a sextupole

◼ Consider the simple case of a periodic sextupole 

perturbation and restrict the study only to one plane. The 

Hamiltonian is written as, 

where            and            are periodic functions of time.

◼ We proceed to the transformation in action angle variables 

to write the Hamiltonian in the form
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Perturbation treatment for a sextupole

◼ The perturbation procedure implies to split the 

perturbation in an average part over the angles and 

an oscillating part

where

and
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Tuneshift from a sextupole

◼ The average part should be only a function of the action

◼ Its derivative with respect to the action should provide the 

frequency shift (tune-shift) due to the non-linearity

◼ It can be shown that this quantity vanishes for a sextupole

perturbation

◼ Sextupoles do not provide any tune-shift at first order

◼ But we know by experience that this is not true, i.e. first 

order perturbation theory fails to give the correct answer

◼ One has to go to higher order (see appendix)
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Perturbation treatment for a sextupole 

◼ The oscillating part is then the same as the original 
Hamiltonian

◼ Following the canonical perturbation procedure the 
generating function is

◼ The only non-zero Fourier terms are for  and 
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Perturbation treatment for a sextupole 

◼ We derived (with a lot of effort) the common result that 
sextupoles at first order excite integer and third integer 
resonances

◼ Again, this is not the full story! It is known that sextupoles 
can drive any resonance, either because their strength is 
large, or because the particle is far away from the closed 
orbit

◼ This can be shown again by pursuing the perturbation 
approach to second order (as for the tune-shift)

◼ A useful application is to use the generating function for 
computing the correction to the original invariant, as the 
new one should be an integral of motion (at first order)
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Phase space for sextupole perturbation

◼ For small perturbations, the new action variable is almost an 
invariant but for larger ones phase space gets deformed

◼ Close to the integer or third integer resonance, canonical 
perturbation theory cannot be applied

◼ The solution is provided by secular perturbation theory (see 
appendix)
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Content of lecture II

◼From linear to non-linear or 
from matrices to maps

◼Lie formalism for building maps

◼Symplectic integration

◼Normal forms for non-linear 
systems

◼Truncated Power Series through 
differential Algebra
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From linear to non-linear 

or 

from matrices to maps
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Linear system in beam dynamics

George Hill

◼ Linear (uncoupled) transverse particle 
motion is described by Hill’s equation

◼ Linear equations with s-dependent 
coefficients (harmonic oscillator with time 
dependent frequency)
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Linear system in beam dynamics

George Hill

◼ In a ring (or in transport line with symmetries), 
coefficients  are periodic

◼ Not straightforward to derive closed analytical solutions 
for the whole accelerator…

◼ Linear (uncoupled) transverse particle 
motion is described by Hill’s equation

◼ Linear equations with s-dependent 
coefficients (harmonic oscillator with time 
dependent frequency)
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Linear system in beam dynamics

George Hill

◼ In a ring (or in transport line with symmetries), 
coefficients  are periodic

◼ Not straightforward to derive closed analytical solutions 
for the whole accelerator… 

◼ …but do we really care, in particular for a system 
composed by discrete building blocks?

◼ Linear (uncoupled) transverse particle 
motion is described by Hill’s equation

◼ Linear equations with s-dependent 
coefficients (harmonic oscillator with time 
dependent frequency)
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Harmonic oscillator

u

u

◼ Consider K(s) = k0 = constant

◼ Equations of harmonic 
oscillator with solution
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Harmonic oscillator

u

u

◼ Consider K(s) = k0 = constant

◼ Equations of harmonic 
oscillator with solution

◼ Note that the solution can be written in matrix form

with

, for k0 > 0

, for k0 < 0
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◼ General transfer matrix from s0 to s

◼ Note that 

which is always true for conservative systems

Matrix formalism
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◼ General transfer matrix from s0 to s

◼ Note that 

which is always true for conservative systems

from s0 to s1

from s0 to s2

from s0 to s3

from s0 to sn

Matrix formalism

…

S0

S1 S2 S3 Sn-1

Sn

◼Any line can be build by a series of matrix multiplications

◼ For a full ring, the matrix multiplication will provide the full 
transfer matrix for 1-turn
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◼ Nonlinear elements can be represented by generalized 
polynomials

◼ For example, general magnetic fields can be represented by 
the multi-pole expansion

◼ Equations of motion in the horizontal plane become

◼ Closed solution does not exist, in principle!

Non-linear motion
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◼ A generalization of the matrix (which can only describe linear 
systems), is a map, which transforms a system from some 
initial to some final coordinates

◼ Analyzing the map, will give useful information about the 
behavior of the system

Maps
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◼ A generalization of the matrix (which can only describe linear 
systems), is a map, which transforms a system from some 
initial to some final coordinates

◼ Analyzing the map, will give useful information about the 
behavior of the system

◼ There are different ways to build the map: 

❑ Taylor (Power) maps

❑ Lie transformations 

❑ Truncated Power Series Algebra (TPSA), can generate 
maps from straight-forward tracking 

◼ Preservation of symplecticity is important

Maps
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◼ For a thin quadrupole the equivalent map can be written

or through the matrix M, as

◼ For a thin sextupole, we can right the coordinate 
transformation as

or where now is a non-linear map.  

Building a non-linear map
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◼ A general representation for the map for the horizontal 
position can be 

or, in a more compact form up to 3rd order, for 

Building a Taylor Map
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◼ For a sextupole in one plane, the representation is written as

or in general for a sextupole of length      and strength

Taylor map for a sextupole

◼ But what about symplecticity? 

◼ Need to introduce Lie formalism
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Lie formalism
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Symplectic maps
◼ Consider two sets of canonical variables which 

may be even considered as the evolution of the system 
between two points in phase space

◼ A transformation from the one to the other set can be 
constructed through a map 
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Symplectic maps
◼ Consider two sets of canonical variables which 

may be even considered as the evolution of the system 
between two points in phase space

◼ A transformation from the one to the other set can be 
constructed through a map 

◼ The Jacobian matrix of the map is 

composed by the elements

◼ The map is symplectic if  where

◼ It can be shown that 
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Symplectic maps
◼ Consider two sets of canonical variables which 

may be even considered as the evolution of the system 
between two points in phase space

◼ A transformation from the one to the other set can be 
constructed through a map 

◼ The Jacobian matrix of the map is 

composed by the elements

◼ The map is symplectic if  where

◼ It can be shown that 

◼ It can be shown that the variables defined through a 
symplectic map which is a known 
relation satisfied by canonical variables

◼ In other words, symplectic maps preserve Poisson brackets
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Are Taylor maps symplectic?
◼ To test the symplecticity of Taylor maps, we have to 

construct the Jacobian matrix with elements

◼ The “thick” sextupole Taylor map, is written

◼ All the coefficients of the Jacobian depend on initial 
conditions, e.g. 

and unless appropriately chosen they cannot satisfy 

◼ In general, Taylor maps are not-symplectic!
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Lie formalism
◼ The Poisson bracket properties satisfy what is 

mathematically called a Lie algebra

◼ They can be represented by (Lie) operators of the form        

and etc.
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Lie formalism
◼ The Poisson bracket properties satisfy what is 

mathematically called a Lie algebra

◼ They can be represented by (Lie) operators of the form        

and etc.

◼ For a Hamiltonian system there is a formal 

solution of the equations of motion 

written as with a symplectic 

map
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Lie formalism
◼ The Poisson bracket properties satisfy what is 

mathematically called a Lie algebra

◼ They can be represented by (Lie) operators of the form        

and etc.

◼ For a Hamiltonian system there is a formal 

solution of the equations of motion 

written as with a symplectic 

map 

◼ The (1-turn) accelerator map can be represented by the 
composition of the maps of each element

where (called the 
generator) is the Hamiltonian for each element, a 
polynomial of degree in the variables    



N
o

n
-l

in
ea

r 
d

y
n

am
ic

s,
 C

E
R

N
 A

cc
el

er
at

o
r 

S
ch

o
o

l,
 N

o
v

em
b

er
 2

02
4

95

Lie operators for simple elements
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Formulas for Lie operators
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Map for quadrupole
◼ Consider the 1D quadrupole Hamiltonian

◼ For a quadrupole of length , the map is written as 
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Map for quadrupole
◼ Consider the 1D quadrupole Hamiltonian

◼ For a quadrupole of length , the map is written as 

◼ Its application to the transverse variables is
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Map for quadrupole
◼ Consider the 1D quadrupole Hamiltonian

◼ For a quadrupole of length , the map is written as 

◼ Its application to the transverse variables is

◼ This finally provides the usual quadrupole matrix
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Map for general monomial

◼ Consider a monomial in the positions and 
momenta 

◼ The map is written as
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Map for general monomial

◼ Consider a monomial in the positions and 
momenta 

◼ The map is written as

◼ Its application to the transverse variables is

❑ For

❑ For  
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Map Concatenation
◼ For combining together the different maps, the Campbell-

Baker-Hausdorff formula can be used. It states that for 
sufficiently small,  and real matrices, there is a real 
matrix  for which
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Map Concatenation
◼ For combining together the different maps, the Campbell-

Baker-Hausdorff formula can be used. It states that for 
sufficiently small,  and real matrices, there is a real 
matrix  for which

◼ For map composition through Lie operators, this is 

translated to with

or

i.e. a series of Poisson bracket operations.
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Map Concatenation
◼ For combining together the different maps, the Campbell-

Baker-Hausdorff formula can be used. It states that for 
sufficiently small,  and real matrices, there is a real 
matrix  for which

◼ For map composition through Lie operators, this is 

translated to with

or

i.e. a series of Poisson bracket operations.

◼ Note that the full map is by “construction” symplectic.

◼ By truncating the map to a certain order, symplecticity is 
lost. 
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Useful form of CBH formula
◼The Campbell-Baker-Hausdorff formula for 

Lie maps has another useful form, 
depending if the summation is done over 
one or the other function

or
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Symplectic integration
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Why symplecticity is important
◼ Symplecticity guarantees that the transformations in phase 

space are area preserving

◼ To understand what deviation from symplecticity produces 
consider the simple case of the quadrupole with the general 
matrix written as
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Why symplecticity is important
◼ Symplecticity guarantees that the transformations in phase 

space are area preserving

◼ To understand what deviation from symplecticity produces 
consider the simple case of the quadrupole with the general 
matrix written as

◼ Take the Taylor expansion for small lengths, up to first 

order

◼ This is indeed not symplectic as the determinant of the 

matrix is equal to , i.e. there is a deviation from 

symplecticity at 2nd order in the quadrupole length



N
o

n
-l

in
ea

r 
d

y
n

am
ic

s,
 C

E
R

N
 A

cc
el

er
at

o
r 

S
ch

o
o

l,
 N

o
v

em
b

er
 2

02
4

109

Phase portrait for non-symplectic matrix

◼ The iterated non-symplectic matrix does not 
provide the well-know elliptic trajectory in phase 
space

◼Although the trajectory is very close to the original 
one, it spirals outwards towards infinity
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Restoring symplecticity
◼ Symplecticity be can restored by adding “artificially” a 

correcting term to the matrix to become

◼ In fact, the matrix now 
can be decomposed as a drift
with a thin quadrupole 
at the end

◼ This representation, 
although not exact 
produces an ellipse
in phase space
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Restoring symplecticity II
◼ The same approach can be continued to 2nd order of the 

Taylor map, by adding a 3rd order correction

◼ The matrix now can be 
decomposed as two half 
drifts with a thin kick at the 
center

◼ This representation now   is 
is even more exact as 
the error now is at 
3rd order in the 
length 
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3-kick symplectic integrator 

◼ The idea is to distribute three kicks with different 
strengths so as to get a final map which is more accurate 
then the previous ones

◼ For the quadrupole, one can write 

which imposes . 

◼ A symmetry condition of this form can be added
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3-kick symplectic integrator 

◼ The idea is to distribute three kicks with different 
strengths so as to get a final map which is more accurate 
then the previous ones

◼ For the quadrupole, one can write 

which imposes . 

◼ A symmetry condition of this form can be added

◼ This provides the matrix with
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3-kick symplectic integrator 
◼ By imposing that the determinant is 1, the following 

additional relations are obtained
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3-kick symplectic integrator 
◼ By imposing that the determinant is 1, the following 

additional relations are obtained

◼ Although these are 5 equations 
with 4 unknowns, solutions exist
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3-kick symplectic integrator 
◼ By imposing that the determinant is 1, the following 

additional relations are obtained

◼ Although these are 5 equations 
with 4 unknowns, solutions exist

◼ This is actually the famous 7 step
4th order symplectic integrator of Forest, Ruth and Yoshida
(1990). It can be generalized for any non-linear element

◼ It imposes negative drifts…
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Higher order integrators
◼ Yoshida has proved that a general integrator map of order 

can be used to built a map of order

with 
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Higher order integrators
◼ Yoshida has proved that a general integrator map of order 

can be used to built a map of order

with 

◼ For example the 4th order scheme 
can be considered as a composition
of three 2nd order ones (single kicks) 

with
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Higher order integrators
◼ Yoshida has proved that a general integrator map of order 

can be used to built a map of order

with 

◼ For example the 4th order scheme 
can be considered as a composition
of three 2nd order ones (single kicks) 

with

◼ A 6th order integrator can be  
produced by three interleaved 4th order ones (9 kicks) 

with
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Normal forms
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◼ Make a coordinate transformation so that we get a simpler 
form of the matrix, i.e. ellipses are transformed to circles 
(simple rotation)

◼ Using linear algebra, the solution is

◼ This transformation can be extended to a non-linear system

Linear normal forms
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Generic normal forms
◼ Normal forms consists of finding a canonical transformation 

of the 1-turn map, so that it becomes simpler to analyze

◼ In the linear case, the Floquet transformation is a kind a 
normal form as it turns ellipses into circles
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Normal forms
◼ Normal forms consists of finding a canonical transformation 

of the 1-turn map, so that it becomes simpler to analyze

◼ In the linear case, the Floquet transformation is a kind a 
normal form as it turns ellipses into circles

◼ The transformation can be written formally as  

with the original map
and its normal form
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Normal forms
◼ Normal forms consists of finding a canonical transformation 

of the 1-turn map, so that it becomes simpler to analyze

◼ In the linear case, the Floquet transformation is a kind a 
normal form as it turns ellipses into circles

◼ The transformation can be written formally as  

with the original map
and its normal form

◼ The transformation is better suited in action 

angle variables, i.e. taking the system from 

the original action-angle to a new set 

with the angles being just 

simple rotations, and the 

new effective Hamiltonian depends only on the new actions
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Effective Hamiltonian
◼ The generating function can be written as a polynomial in 

the new actions, i.e.

◼ There are software tools that built this transformation

◼ Once the “new” effective Hamiltonian is known, all 
interesting quantities can be derived

◼ This Hamiltonian is a function only of the new actions, and 
to 3rd order it is obtained as
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Effective Hamiltonian
◼ The correction of the tunes is given by

◼ The correction to the path length is

tunes tune-shift   with 

amplitude

1st and 2nd order 

chromaticity

1st, 2nd and 3rd momentum 

compaction
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Normal form for perturbation
◼ Using the BCH formula, one can prove that the composition 

of two maps with small can be written as (see slide  109)
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Normal form for perturbation
◼ Using the BCH formula, one can prove that the composition 

of two maps with small can be written as (see slide  109)

◼ Consider a linear map (rotation) followed by a small 
perturbation

◼ We are seeking for  transformation such that
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Normal form for perturbation
◼ Using the BCH formula, one can prove that the composition 

of two maps with small can be written as (see slide  9)

◼ Consider a linear map (rotation) followed by a small 
perturbation

◼ We are seeking for  transformation such that

◼ This can be written as

◼ This will transform the new map to a rotation to leading 
order
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Example: Octupole
◼ Consider a linear map followed by an octupole

◼ The generating function has to be chosen such as to 
make the following expression simpler
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Example: Octupole
◼ Consider a linear map followed by an octupole

◼ The generating function has to be chosen such as to 
make the following expression simpler

◼ The simplest expression is the one that the angles are 
eliminated and there is only dependence on the 
action
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Example: Octupole
◼ Consider a linear map followed by an octupole

◼ The generating function has to be chosen such as to 
make the following expression simpler

◼ The simplest expression is the one that the angles are 
eliminated and there is only dependence on the 
action

◼We pass to the action angle variable (resonance 
basis)

◼ The perturbation is  
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Example: Octupole
◼ The term is independent on the angles. 

Thus we may choose the generating functions such that the 
other terms are eliminated. It takes the form 
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Example: Octupole
◼ The term is independent on the angles. 

Thus we may choose the generating functions such that the 
other terms are eliminated. It takes the form 

◼ The map is now written as

◼ The new effective Hamiltonian is depending only on the 
actions and contains the tune-shift terms
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Example: Octupole
◼ The term is independent on the angles. 

Thus we may choose the generating functions such that the 
other terms are eliminated. It takes the form 

◼ The map is now written as

◼ The new effective Hamiltonian is depending only on the 
actions and contains the tune-shift terms

◼ The generator in the original variables is written as

◼ Constant values of the generator describe the trajectories in 
phase space 
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Introduction to 

Truncated Power Series 

Algebra (TPSA)
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◼ Let’s consider a tracked particle at position α and a small
deviation Δx. The Taylor series around this position is

Taylor series from tracking
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◼ Let’s consider a tracked particle at position α and a small
deviation Δx. The Taylor series around this position is

Taylor series from tracking

◼ By truncating we have

and the function can be represented by the vector 

◼ This vector is a Truncated Power Series Algebra

◼ We need the derivatives                 of           at       with

which is numerically non-trivial 
(small divisors, accuracy for 
higher orders,…)



N
o

n
-l

in
ea

r 
d

y
n

am
ic

s,
 C

E
R

N
 A

cc
el

er
at

o
r 

S
ch

o
o

l,
 N

o
v

em
b

er
 2

02
4

139

◼ The basic idea is the automatic differentiation of results 
produced by a tracking code to provide the coefficients of a 
Taylor series

Differential Algebra
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◼ The basic idea is the automatic differentiation of results 
produced by a tracking code to provide the coefficients of a 
Taylor series

◼ Consider a pair of real numbers                and define 
operations on a pair like

Differential Algebra
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◼ The basic idea is the automatic differentiation of results 
produced by a tracking code to provide the coefficients of a 
Taylor series

◼ Consider a pair of real numbers                and define 
operations on a pair like

and some ordering

Differential Algebra

implying strange relations of the form
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Differential Algebra
◼ We define the differential unit , which is located 

between 0 and any real number (infinitesimally small)

◼ As is just a real number, we can define a real part and a 
differential part
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Differential Algebra
◼ We define the differential unit , which is located 

between 0 and any real number (infinitesimally small)

◼ As is just a real number, we can define a real part and a 
differential part

◼ Using the previous rules we can show

◼ A function acting on a pair is

◼ The differential is  
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Differential Algebra example
◼ Consider the function with the derivative

. For , we obtain 
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Differential Algebra example
◼ Consider the function with the derivative

. For , we obtain 

◼ Let’s use differential algebra, by substituting                                 
to the function and use the rules

◼ We computed exactly the derivative, only by using algebra!
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Higher orders
◼ The operation can be extended to derivatives of order N by 

considering that the pair becomes

◼ We can extend the operations as

with

with

◼ For example 
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Higher dimensions
◼ The operation can be extended to more variables

◼ With some modified multiplication rules

with

providing

◼ Using the formalism above, a truncated Taylor map with the 
desired accuracy and to any order, directly from tracking 
data
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Summary
◼ Natural way to represent motion in an accelerator is by using maps

◼ Powerful tools to build them from straight-forward tracking 
(TPSA)

◼ Canonical (symplectic) transformations enable to move from 
variables describing a distorted phase space to something simpler 
(ideally circles)

◼ The generating functions passing from the old to the new variables 
are bounded to diverge in the vicinity of resonances (emergence of 
chaos, see Lectures of NLD Phenomenology)

◼ Calculating this generating function with canonical perturbation 
theory becomes hopeless for higher orders

◼ Lie transformations of accelerator maps enables derivation of the 
generating functions in an algorithmic way, in principle to 
arbitrary order 

◼ For real accelerator models, we have to rely on symplectic
integration, i.e. particle tracking and methods to analyse it (see 
Lectures of NLD Phenomenology)
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Appendix
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Lagrangian formalism
❑ Describe motion of particles in qn coordinates 

(n degrees of freedom) from time t1 to time t2
❑ It can be achieved by the Lagrangian function 

with the 
generalized coordinates and the 
generalized velocities
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Lagrangian formalism
❑ Describe motion of particles in qn coordinates 

(n degrees of freedom) from time t1 to time t2
❑ It can be achieved by the Lagrangian function 

with the 
generalized coordinates and the 
generalized velocities

❑ The Lagrangian is defined as , i.e. 
difference between kinetic and potential energy 

❑The integral 
defines the action

❑Hamilton’s principle: system 
evolves so as the action becomes 
extremum (principle of stationary action)
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Euler- Lagrange equations

❑By using Hamilton’s principle, i.e. , 
over some time interval t1 and t2 for two 
stationary points (see 
appendix), the following differential 
equations for each degree of freedom are 
obtained, the Euler-Lagrange equations

❑In other words, by knowing the form of the 
Lagrangian, the equations of motion can be 
derived
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Lagrangian mechanics
❑For a simple force law contained in a potential 

function, governing motion among interacting 
particles, the Lagrangian is (or as Landau-Lifshitz
put it “experience has shown that…”)

❑ For velocity independent potentials, Lagrange 
equations become

,

i.e. Newton’s equations.
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From Lagrangian to Hamiltonian
❑ Some disadvantages of the Lagrangian formalism:

❑ No uniqueness: different Lagrangians can lead to same 
equations

❑ Physical significance not straightforward (even its basic 
form given more by “experience” and the fact that it 
actually works that way!)

❑ Note: Lagrangian is very useful in particle physics 
(invariant under Lorentz transformations)



N
o

n
-l

in
ea

r 
d

y
n

am
ic

s,
 C

E
R

N
 A

cc
el

er
at

o
r 

S
ch

o
o

l,
 N

o
v

em
b

er
 2

02
4

155

From Lagrangian to Hamiltonian
❑ Some disadvantages of the Lagrangian formalism:

❑ No uniqueness: different Lagrangians can lead to same 
equations

❑ Physical significance not straightforward (even its basic 
form given more by “experience” and the fact that it 
actually works that way!)

❑ Note: Lagrangian is very useful in particle physics 
(invariant under Lorentz transformations)

❑ Lagrangian function provides in general      second 
order differential equations (coordinate space)

❑Advantage to move to system of     first order 
differential equations, which are more 
straightforward to solve (phase space)

❑Derived by the Hamiltonian of the system
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Derivation of Lagrange equations

❑The variation of the action can be written as

❑ Taking into account that , the 2nd part of the 

integral can be integrated by parts giving   

❑The first term is zero because
so the second integrant should also vanish,
providing the  following differential equations for 
each degree of freedom, the Lagrange equations
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Derivation of Hamilton’s equations

❑ The equations of motion can be derived from the 
Hamiltonian following the same variational principle as for 
the Lagrangian (“least” action) but also by simply taking the 
differential of the Hamiltonian
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Derivation of Hamilton’s equations

❑ The equations of motion can be derived from the 
Hamiltonian following the same variational principle as for 
the Lagrangian (“least” action) but also by simply taking the 
differential of the Hamiltonian

or

❑ By equating terms, Hamilton’s equations are derived

❑ These are indeed equations describing the motion in 
the “extended” phase space
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Examples of transformations
❑ The transformation , which interchanges

conjugate variables is area preserving, as the Jacobian is  
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Examples of transformations
❑ The transformation , which interchanges

conjugate variables is area preserving, as the Jacobian is  

❑On the other hand, the transformation from Cartesian to 
polar coordinates is not, since
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Examples of transformations
❑ The transformation , which interchanges

conjugate variables is area preserving, as the Jacobian is  

❑On the other hand, the transformation from Cartesian to 
polar coordinates is not, since

❑ There are actually “polar” coordinates that are canonical, 

given by for which
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The Relativistic 

Hamiltonian for 

electromagnetic fields
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Single-particle relativistic Hamiltonian

❑Neglecting self fields and radiation, motion can be 
described by a “single-particle” Hamiltonian

❑ Cartesian positions

❑ conjugate momenta

❑ magnetic vector potential

❑ electric scalar potential
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Single-particle relativistic Hamiltonian

❑Neglecting self fields and radiation, motion can be 
described by a “single-particle” Hamiltonian

❑ Cartesian positions

❑ conjugate momenta

❑ magnetic vector potential

❑ electric scalar potential

❑The ordinary kinetic momentum vector is written

with      the velocity vector and the 
relativistic factor
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Single-particle relativistic Hamiltonian

❑ It is generally a 3 degrees of freedom one plus time (i.e., 4 
degrees of freedom)

❑ The Hamiltonian represents the total energy
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Single-particle relativistic Hamiltonian

❑ It is generally a 3 degrees of freedom one plus time (i.e., 4 
degrees of freedom)

❑ The Hamiltonian represents the total energy

❑ The total kinetic momentum is

❑ Using Hamilton's equations

it can be shown that motion is governed by Lorentz equations
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From Cartesian to “curved” coordinates

❑ It is useful (especially for rings)                                 
to transform the Cartesian                            
coordinate system to the                                       
Frenet-Serret system moving                                       
to a closed curve, with path length    

❑The position coordinates in the two systems are 
connected by

❑The Frenet-Serret unit vectors and their derivatives 
are defined as 

with        the radius of curvature and        the torsion 
which vanishes in case of planar motion

s

Particle trajectory

ρ

n

b

t

x
y

φ
r0

r
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From Cartesian to “curved” variables

❑We are seeking a canonical transformation between 

❑The generating function is 

❑By using the relationship between the positions, the 
generating  function is 
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From Cartesian to “curved” variables

❑for planar motion, the momenta are

❑Taking into account that the vector potential is also 

transformed in the same way

the new Hamiltonian is given by 



N
o

n
-l

in
ea

r 
d

y
n

am
ic

s,
 C

E
R

N
 A

cc
el

er
at

o
r 

S
ch

o
o

l,
 N

o
v

em
b

er
 2

02
4

170

Changing of the independent variable

❑ It is more convenient to use the path length , 
instead of the time as independent variable

❑ The Hamiltonian can be considered as having 4 
degrees of freedom, where the 4th “position” is 
time and its conjugate momentum is 
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Changing of the independent variable

❑ It is more convenient to use the path length , 
instead of the time as independent variable

❑ The Hamiltonian can be considered as having 4 
degrees of freedom, where the 4th “position” is 
time and its conjugate momentum is 

❑In the same way, the new Hamiltonian with the 
path length as the independent variable is just 

with

❑It can be proved that this is indeed a canonical 
transformation

❑Note the existence of the reference orbit for zero 
vector potential, for which 
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Neglecting electric fields
❑ Due to the fact that longitudinal (synchrotron) 

motion is much slower than the transverse
(betatron) one, the electric field can be set to zero 
and the Hamiltonian is written as

❑ The Hamiltonian is then written as

❑ If static magnetic fields are considered, the time 
dependence is also dropped, and the system is 
having 2 degrees of freedom + “time” (path length)



N
o

n
-l

in
ea

r 
d

y
n

am
ic

s,
 C

E
R

N
 A

cc
el

er
at

o
r 

S
ch

o
o

l,
 N

o
v

em
b

er
 2

02
4

173

Momentum rescaling
❑ Due to the fact that total momentum is much larger 

than the transverse ones, another transformation 
may be considered, where the transverse momenta 
are rescaled

❑The new variables are indeed canonical if the 
Hamiltonian is also rescaled and written as 

with 

and
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Moving the reference frame

❑ Along the reference trajectory and

❑ It is thus useful to move the reference frame to the
reference trajectory for which another canonical 
transformation is performed
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Moving the reference frame

❑ Along the reference trajectory and

❑ It is thus useful to move the reference frame to the
reference trajectory for which another canonical 
transformation is performed

❑The mixed variable generating function is 
providing

❑The Hamiltonian is then
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Relativistic and transverse field approximations

❑ First note that 
and  

❑In the ultra-relativistic limit 
and the Hamiltonian is written as                        

where the “hats” are dropped  for simplicity
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Relativistic and transverse field approximations

❑ First note that 
and  

❑In the ultra-relativistic limit 
and the Hamiltonian is written as                        

where the “hats” are dropped  for simplicity

❑If we consider only transverse field components, 
the vector potential has only a longitudinal
component and the Hamiltonian is written as

❑Note that the Hamiltonian is non-linear even in the 
absence of any field component (i.e. for a drift)!
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High-energy, large ring approximation

❑ It is useful for study purposes (especially for 
finding an “integrable” version of the Hamiltonian) 
to make an extra approximation

❑ For this, transverse momenta (rescaled to the 
reference momentum) are considered to be much 
smaller than 1, i.e. the square root can be expanded.

❑ Considering also the large machine approximation
, (dropping cubic terms), the Hamiltonian 

is simplified to  

❑This expansion may not be a good idea, especially 
for low energy, small size rings 
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Relativistic and transverse field approximations

❑ First note that 
and  

❑In the ultra-relativistic limit 
and the Hamiltonian is written as                        

where the “hats” are dropped  for simplicity

❑If we consider only transverse field components, the 
vector potential has only a longitudinal component 
and the Hamiltonian is written as

❑Note that the Hamiltonian is non-linear even in the 
absence of any field component (i.e. for a drift)!
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Magnetic multipole expansion
◼ From Gauss law of magnetostatics, a vector potential exist 

◼ Assuming transverse 2D field, vector potential has only one 
component As. The Ampere’s law in vacuum (inside the 
beam pipe) 

◼ Using the previous equations, the relations between field 
components and potentials are

i.e. Riemann conditions of an analytic function

Exists complex potential of with  
power series expansion convergent in a circle 
with radius (distance from iron yoke)

x

y

iron

rc
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Multipole expansion II
◼ From the complex potential we can derive the fields

◼ Setting

◼ Define normalized coefficients 

on a reference radius r0, 10-4 of the main field to get

◼ Note: is the US convention
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Canonical perturbation theory

◼ Expand term by term the Hamiltonian                                   
to leading order in

◼ The new Hamiltonian can also be expanded in orders of 

◼ Equating the terms of equal orders in    , we obtain

❑ Zero order

❑ First order

where the frequency vector is 
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Canonical perturbation theory
◼ From the first order Hamiltonian, the angles have to be 

eliminated. For this purpose, it can be split in two parts:

❑ Average part: 

❑ Oscillating part: 

◼ The 1st order perturbation part of the Hamiltonian then 
becomes

◼ Thus, the generating function should be chosen such that 
the angle dependence is eliminated, for which

◼ The new Hamiltonian is a function of the new actions      
with the 

new frequency vector

and
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Form of the generating function
◼ The question that remains to be answered is whether a 

generating function can be found that eliminates the angle 
dependence

◼ The oscillating part of the perturbation and the generating 
function can be expanded in Fourier series 

with

◼ Following the relationship for the angle elimination, the 
Fourier coefficients of the generating function should 
satisfy

◼ Then, the generating function can be written as

with
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Second order sextupole tune-shift

◼ It can be shown that at second order in perturbation theory 
the Hamiltonian depending only on the actions can be 
written

◼ This can be simplified to

◼ The two terms  are 

◼ The 2nd order Hamiltonian is given by the angle-averaged  
product of the last two terms. 

◼ It is quadratic in the sextupole strength and the new action. 
The 2nd order tune-shift is the derivative in the action
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Perturbation treatment for more 

sextupoles
◼ Expand both the perturbation and generating function in  

Fourier series of the form 
and

◼ The equation relating the amplitudes is 

which can be solved yielding
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◼ Expand both the perturbation and generating function in  
Fourier series of the form 

and

◼ The equation relating the amplitudes is 

which can be solved yielding

◼ Following the canonical perturbation procedure the 
generating function is

◼ For the sextupole, and letting we have

Perturbation treatment for more 

sextupoles
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Single resonance for accelerator Hamiltonian

◼ The single resonance accelerator Hamiltonian 
(Hagedorn (1957), Schoch (1957), Guignard (1976, 
1978)) 

with 

◼ From the generating function   

the relationships between old and new variables are                                                 

◼ The following Hamiltonian is obtained
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Resonance widths
◼ There are two integrals of motion 

❑ The Hamiltonian, as it is independent on “time”

❑ The new action as the Hamiltonian is independent on

◼ The two invariants in the old variables are written as:

◼ Two cases can be distinguished
❑ have opposite sign, i.e. difference resonance, the motion is 

the one of an ellipse, so bounded

❑ have the same sign, i.e. sum resonance, the motion is the one 
of an hyperbola, so not bounded

◼ These are first order perturbation theory considerations

◼ The distance from the resonance is obtained as
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General accelerator Hamiltonian

◼ The general accelerator Hamiltonian is written as

◼ The transverse coordinated can be expressed in action-angle 
variables as

◼ The Hamiltonian in action-angle variables is 
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General accelerator Hamiltonian

◼ The general accelerator Hamiltonian is written as

◼ The transverse coordinated can be expressed in action-angle 
variables as

◼ The Hamiltonian in action-angle variables is 

❑ The integrable part 

❑ The perturbation
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General accelerator Hamiltonian

◼ The general accelerator Hamiltonian is written as

◼ The transverse coordinated can be expressed in action-angle 
variables as

◼ The Hamiltonian in action-angle variables is 

❑ The integrable part 

❑ The perturbation

◼ The coefficients 

depend on the optics, with the indexes
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Resonance driving terms

◼ As the coefficients                 are periodic, the perturbation 
can be expanded in  Fourier series

with the resonance driving terms



N
o

n
-l

in
ea

r 
d

y
n

am
ic

s,
 C

E
R

N
 A

cc
el

er
at

o
r 

S
ch

o
o

l,
 N

o
v

em
b

er
 2

02
4

194

Resonance driving terms

◼ As the coefficients                 are periodic, the perturbation 
can be expanded in  Fourier series

with the resonance driving terms

◼ For , resonance conditions 
appear for 

◼ Goal of accelerator design and correction systems is to 
minimize the resonance driving terms
❑ Change magnet design so that become smaller

❑ Introduce magnetic elements capable of creating a cancelling effect

❑ Sort magnets or non-linear elements in a way that phase terms are 
minimised
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Tune-shift and tune-spread

◼ First order correction to the tunes is computed by the 
derivatives with respect to the action of the average part of 
perturbation. For a given term, the leading 
order correction to the tunes are

where                 is the average of around the ring. 

◼ In the accelerator jargon if  is independent of the 
action, it is referred to as tune-shift, whereas, if it depends 
on the action, it is called tune-spread (or amplitude 
detuning)

◼ At first order, , for odd multi-poles
(trigonometric functions give zero averages). 
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Resonance classification
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◼ The general resonance conditions is 

with order 

◼For all the polynomial field terms of a       -pole, the excited 
resonances (at first order) satisfy the condition                          
but there are also sub-resonances for which 
◼ For  normal (erect) multi-poles, the resonances (at first 
order) are whereas for skew 
multi-poles

General resonance conditions
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◼ The general resonance conditions is 

with order 

◼For all the polynomial field terms of a       -pole, the excited 
resonances (at first order) satisfy the condition                          
but there are also sub-resonances for which 
◼ For  normal (erect) multi-poles, the resonances (at first 
order) are whereas for skew 
multi-poles

General resonance conditions

◼If perturbation is large, all resonances 
can be potentially excited 
◼ The resonance conditions form lines 
in frequency space and fill it up as the 
order grows (the rational numbers 
form a dense set inside the real 
numbers), but Fourier amplitudes 
should also decrease
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◼ If lattice is made out of identical cells, and the 
perturbation follows the same periodicity, resulting in 
a reduction of the resonance conditions to the ones 
satisfying

◼ These are called 
systematic resonances

◼ Practically, any (linear)
lattice perturbation breaks 
super-periodicity and any 
random resonance can be 
excited 

◼Careful choice of the 
working point is necessary

Systematic and random resonances
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Example: The –I transformer
◼ Consider two identical sextupoles separated by a beam line 

represented by a map 

◼ The sextupole map can be represented at second order as 

with the sextupole effective Hamiltonian 
and         the drift Hamiltonian
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Example: The –I transformer
◼ Consider two identical sextupoles separated by a beam line 

represented by a map

◼ The sextupole map can be represented at second order as 

with the sextupole effective Hamiltonian 
and         the drift Hamiltonian

◼ The total map can be approximated at 2nd order by 

with the map



N
o

n
-l

in
ea

r 
d

y
n

am
ic

s,
 C

E
R

N
 A

cc
el

er
at

o
r 

S
ch

o
o

l,
 N

o
v

em
b

er
 2

02
4

202

Example: The –I transformer
◼ Inserting the identity , we have

◼ The similarity transformation can be used

◼ The map is then rewritten as 
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Example: The –I transformer
◼ Inserting the identity , we have

◼ The similarity transformation can be used

◼ The map is then rewritten as 

◼ If the map is chosen such that            
or so that 

◼ In that way, the sextupole non-linearity is getting 
eliminated in the final map
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Example: The –I transformer
◼ Inspecting the form of (odd in      and  even in     ),  this 

can be achieved if the map is such that

◼ In matrix form this can be written as

◼ The horizontal part of the matrix is and the vertical 
part is  , which is obtained for phase advances

◼ This is why this beam line is called a -I-transformer
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Modern symplectic integration schemes

◼ Symplectic integrators with positive steps for Hamiltonian 

systems with both     and      integrable were 

proposed by McLachlan (1995). 

◼ Laskar and Robutel (2001) derived all orders of such 

integrators

◼ Consider the formal solution of  the Hamiltonian system 

written in the Lie representation

◼ A symplectic integrator of  order     from     to               

consists of  approximating the Lie map 

by products of  and which 

integrate exactly and over the time-spans       and 

◼ The constants      and are chosen to reduce the error
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SABA2C integrator
◼ The SABA2 integrator is written as

with

◼ When  is integrable,  e.g. when A is quadratic in 

momenta and B depends only in positions, the accuracy of  

the  integrator is  improved by two small negative steps 

with

◼ The accuracy of  SABA2C is one 

order of  magnitude higher than then than 

the Forest-Ruth 4th order scheme

◼ The usual “drift-kick” scheme 

corresponds to the 2nd order integrator of  this class
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SABA2C integrator

K. Skoufaris et al. PRAB 2022

◼ From 1 to several orders of magnitude better precision 
of SABAnC with respect to classical integrators
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Graphical resonance representation

◼ It is possible by constructing the one turn map to 
built the generating (sometimes called 
“distortion”) function

◼ For any resonance ,   and setting 
, the associated part of the functions is 
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Normal forms for LHC models
◼ In the LHC at injection (450 

GeV), beam stability is 
necessary over a very large 
number of turns (107)

◼ Stability is reduced from 
random multi-pole 
imperfections mainly in the 
super-conducting magnets

◼ Area of stability (Dynamic 
aperture - DA) computed with 
particle tracking for a large 
number of random magnet 
error distributions

◼ Numerical tool based on 
normal form analysis (GRR) 
permitted identification of DA 
reduction reason (errors in the 
“warm” quadrupoles)

o With “warm” quad. errors

o Without “warm” quad. errors


