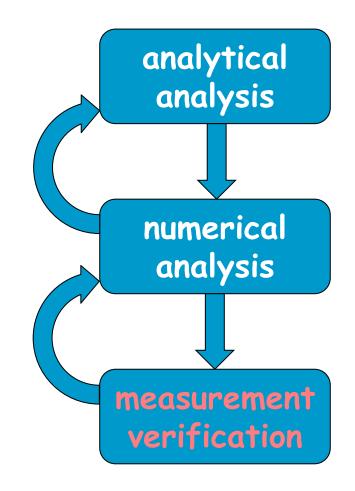
2024 CAS course on "RF for Accelerators" **RF Measurements** – Computer Lab Intro –

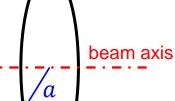

Manfred Wendt – CERN

Design Workflow

- Limited, simple geometries for analytical solution for electromagnetic field problems
- Benchmark numerical EM codes to known analytical solutions for a similar, simple geometry
 - here: perfect cylinder as resonant cavity with ideal materials
 - Perfect electric conductor (PEC)
- Benchmark the final, optimized geometry with different numerical codes (if possible)
- Manufacturing a prototype and compare RF measurement with numerical results

- Electromagnetic field problems
 - Dassault CST Studio Suite commercial
 - Ansys HFSS commercial
 - GdfidL ("Gitter drüber, fertig ist die Laube") commercial
 - ACE3P SLAC development
 - Open source, e.g., Meep, grpMax, openEMS, FEniCS, Elmer FEM, FreeFEM, Bempp,... (still too many hurdles for practical use)
- Circuit level simulations
 - Keysight Pathwave ADS (Advance Design System) commercial
 - AWR Microwave Office commercial
 - Ansoft Designer commercial
 - Various commercial SPICE versions, e.g., Pspice, HSPICE, PrimeSim SPICE,...
 - Open source / freeware: Qucs, Qucs-S, QucsStudio, various free SPICE versions, e.g., Berkeley SPICE, Ltspice Ngspice
- Other RF software
 - Too many to list. Here we will use:
 Dellsperger Smith, a software to introduce the *Smith* chart

Cylindrical Resonator Equations (1)


- Eigenfrequencies
 - For the TE_{nml} -modes:

$$f_{TEnml} = \frac{c}{2\pi} \sqrt{\left(\frac{p'_{nm}}{a}\right)^2 + \left(\frac{\pi l}{h}\right)^2} \quad [Hz]$$

For the TM_{nml}-modes:

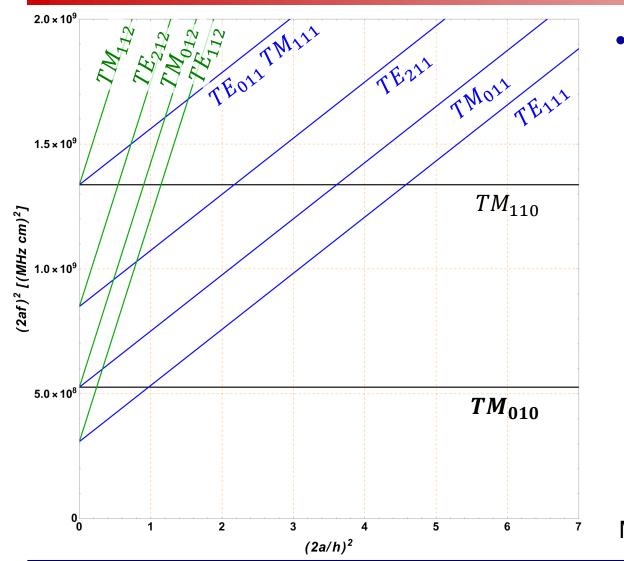
$$f_{TMnml} = \frac{c}{2\pi} \sqrt{\left(\frac{p_{nm}}{a}\right)^2 + \left(\frac{\pi l}{h}\right)^2} \quad [Hz]$$

- *p_{nm}* and *p'_{nm}* are the zeros of the Bessel function of 1st kind *J*₀, respectively the zeros of the derivative of the Bessel function of 1st kind *J'*₀
- \succ *c* ≅ 2.998 × 10⁸ *m/s* speed of light

h

" "Ideal" cylindrical resonator

- No beam ports
- Diameter: 2*a*
- Height: h
- Vacuum: $\varepsilon_r = 1$


n	<i>p</i> ' _{<i>n</i>1}	<i>p</i> ' _{<i>n</i>2}	<i>p</i> ′ _{<i>n</i>3}
0	3.832	7.016	10.174
1	1.841	5.331	8.536
2	3.054	6.706	9.970

n	p_{n1}	p_{n2}	<i>p</i> _{n3}
0	2.405	5.520	8.654
1	3.832	7.016	10.174
2	5.135	8.417	11.620

Cylindrical Resonator Equations (2)

- Analytical equations for the *TM*₀₁₀ accelerating mode
 - TM_{010} -mode related wavelength:

$$\lambda_{TM010} = \frac{c}{f_{TM010}} = \frac{2\pi}{p_{01}} a \cong 2.61274 a \ [m]$$

$$\implies a = \frac{p_{01}}{2\pi} \lambda_{TM010} \cong 0.38274 \lambda_{TM010} [m]$$

- *TM*₀₁₀-mode resonance frequency:

$$f_{TM010} = \frac{c}{\lambda_{TM010}} \quad [Hz]$$

Mode chart for cylindrical resonators

2024 CAS course on "RF for Accelerators": RF Measurements – M. Wendt

 Quality factor – unloaded Q₀ (Q-factor or Q-value)

$$Q = \frac{a}{\delta} \left[1 + \frac{a}{h} \right]^{-1}$$

- with the skin-depth:

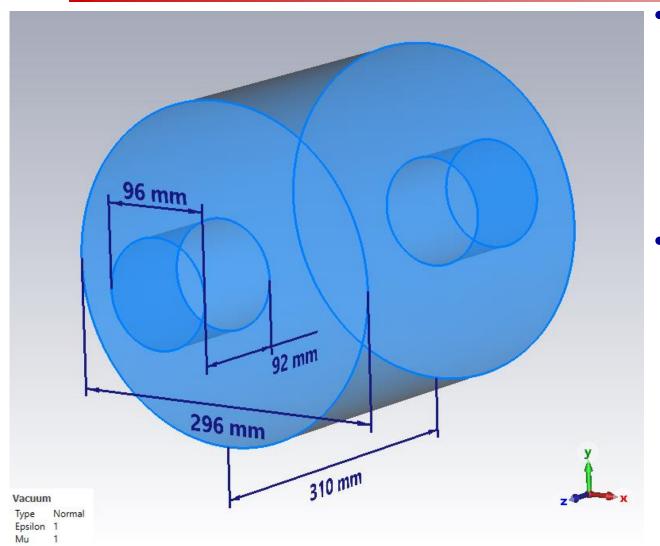
$$\delta = \sqrt{\frac{2}{\omega_{TM010}\sigma\mu}} \quad [m]$$

➤ with:

$$\omega_{TM010} = 2\pi f_{TM010}$$
$$\mu = \mu_r \mu_0 \cong 1 \times 4\pi \cdot 10^{-7} H/m$$
(non-magnetic media)

 σ [S/m] (conductivity of the material of the cavity walls) • "Geometry factor" R/Q (R-over-Q)

$$R/Q = \frac{4 \eta_0}{\pi p_{01}^3 J_1^2(p_{01})} \frac{\sin^2\left(\frac{p_{01}}{2}\frac{h}{a}\right)}{h/a} \quad [\Omega]$$


$$R/Q \approx 128 \,\Omega \frac{\sin^2 \left(\frac{p_{01}}{2} \frac{h}{a}\right)}{h/a} \left[\Omega\right]$$
$$\approx 185 \,\Omega \, h/a \left[\Omega\right] \text{ for: } \frac{p_{01}}{2} \frac{h}{a} \ll 1$$

- With:
$$\eta_0 = \sqrt{\frac{\mu_0}{\varepsilon_0}} \cong 120\pi \ [\Omega] \cong 377 \ [\Omega]$$

 $p_{01} = 2.40483$
 $J_1(p_{01}) = 0.519147$

Cylindrical "Pill-box" Cavity

Properties

- cavity radius a = 148 mm
- cavity height h = 310 mm
- material conductivity stainless steel $\sigma = 1.33 \times 10^6 \ S/m$
- beam-port radius $a_{port} = 48 mm$
- Beam-port length $h_{port} = 92 mm$
- Results analytical (no beam-ports):
 - Eigen-mode frequencies
 - Depend on the object size
 - $f_{TE111} = 766 MHz$
 - $f_{TM010} = 776 MHz$
 - Q-factor (unloaded)
 - > Depend on the wall material conductivity $Q_0(TM010) = 6322$
 - Characteristic impedance of the eigen-mode

> Depends on the shape of the object $R/Q(TM010) = 10.4 \Omega$