Transverse Beam Emittance Diagnostics

CAS - Advanced Accelerator Physics

Gero Kube Spa (Belgium), 11.-22.11.2024

HELMHOLTZ

Accelerator Key Parameters

Light Source vs. Collider

light source: spectral brilliance

• measure for phase space density of photon flux

$$B = \frac{\text{Number of photons}}{[\text{sec}][\text{mm}^2][\text{mrad}^2][0.1\% \text{ bandwidth}]}$$

- user requirement: high brightness
 - \rightarrow lot of monochromatic photons on sample
- connection to machine parameters

requirement: high quality accelerator

- high beam current → instabilities, high heat load...
- small transverse emittance
 - \rightarrow generate small emittance (lattice design)
 - \rightarrow preserve emittance (instabilities \rightarrow feedback)
 - \rightarrow measure small emittance

collider: luminosity

• measure for the collider performance

$$\dot{N} = L \cdot \sigma$$

relativistic invariant proportionality factor between cross section σ (property of interaction) and number of interactions per second

- user requirement: high luminosity
 - \rightarrow lot of interactions in reaction channel
- connection to machine parameters

for two identical beams with emittances $\varepsilon_x = \varepsilon_z = \varepsilon$

large emittance

Transverse Emittance

Projection of Trace Space Volume

trace space

- space defined by position **x** & divergence **x'**
- separate horizontal, vertical (and longitudinal) plane
- under linear forces (dipoles, quadrupoles)
 - any particle moves on an ellipse in trace space (x, x')
 - o ellipse rotates in magnets and shears along drifts
 - \rightarrow but area is preserved: **emittance**

(α , β , γ , ε : Courant-Snyder or Twiss parameters)

transformation along accelerator

- knowledge of the magnet structure (beam optics) → transformation from initial (i) to final (f) location
 - single particle transformation

• transformation of optical functions

$$\begin{pmatrix} \beta \\ \alpha \\ \gamma \end{pmatrix}_{f} = \begin{pmatrix} R_{11}^{2} & -2R_{11}R_{12} & R_{12}^{2} \\ -R_{11}R_{21} & 1+R_{12}R_{21} & -R_{12}R_{22} \\ R_{21}^{2} & -2R_{21}R_{22} & R_{22}^{2} \end{pmatrix} \cdot \begin{pmatrix} \beta \\ \alpha \\ \gamma \end{pmatrix}_{i}$$

Transverse Emittance Ellipse

Propagation along Accelerator

change of ellipse shape and orientation

• area is preserved

$$\alpha(s) = -\frac{\beta'(s)}{2}$$
$$\gamma(s) = \frac{1 + \alpha^2(s)}{\beta(s)}$$

 $\varepsilon = \gamma(s) x(s)^2 + 2\alpha(s) x(s) x'(s) + \beta(s) x'(s)^2$

Emittance and Beam Matrix

Emittance Representations

beam matrix

$$\Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix} = \begin{pmatrix} \langle x^2 \rangle & \langle xx' \rangle \\ \langle xx' \rangle & \langle x'^2 \rangle \end{pmatrix} = \varepsilon \begin{pmatrix} \beta & -\alpha \\ -\alpha & \gamma \end{pmatrix}$$

$$\varepsilon = \sqrt{\det \Sigma} = \sqrt{\Sigma_{11} \cdot \Sigma_{22} - \Sigma_{12}^2}$$

• transformation of beam matrix

$$\Sigma(s_1) = \mathrm{R}\Sigma(s_0)\mathrm{R}^T \qquad \text{with} \qquad R = \begin{pmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{pmatrix}$$

via Twiss (Courant-Snyder) parameters

$$\varepsilon = \gamma x^2 + 2\alpha x x' + \beta x'^2$$

statistical definition

P.M. Lapostolle, IEEE Trans. Nucl. Sci. NS-18, No.3 (1971) 1101

$$\varepsilon_{rms} = \sqrt{\langle x^2 \rangle \langle x'^2 \rangle - \langle xx' \rangle^2}$$

with 2^{nd} moments of beam distribution $\rho(x)$

- ε_{rms} is measure of spread in trace space
- root-mean-square (rms) of distribution

$$\sigma_x = \langle x^2 \rangle^{1/2}$$

- $\bullet \qquad \epsilon_{rms} \text{ is useful definition for non-linear beams} \\$
 - o usually restriction to certain range
 - → c.f. 90% of particles instead of $[-\infty, +\infty]$

 $\langle x^2 \rangle = \frac{\int_{-\infty}^{\infty} \mathrm{d}x \, x^2 \cdot \rho(x)}{\int_{-\infty}^{\infty} \mathrm{d}x \, \rho(x)}$

Emittance Measurement

Principle

measurement of projected area of transverse trace space volume

not directly accessible for beam diagnostics

- accessible quantities •
- beam size Ο

beam divergence 0

- $\sqrt{\Sigma_{11}} = \sqrt{\left\langle x^2 \right\rangle} = \sqrt{\varepsilon \,\beta}$
- $\sqrt{\Sigma_{22}} = \sqrt{\langle x'^2 \rangle} = \sqrt{\varepsilon \gamma}$
- divergence measurements seldom in use Ο
 - \rightarrow restriction to profile measurements

- measurement schemes
 - mapping of trace space 0
 - \rightarrow restrict to (infenitesimal) element in space coordinate, convert angles x' in position x

- beam matrix based measurements \mathbf{O}
 - determination of beam matrix elements \rightarrow

$$\varepsilon = \sqrt{\det \Sigma} = \sqrt{\Sigma_{11} \cdot \Sigma_{22} - \Sigma_{12}^2}$$

Trace Space Mapping

Principle

slit scan method

- low energy beams often space charge limited → cutting out small beamlet
- slit produces vertical slice in transverse phase space
- measure intensity as function of $x' \rightarrow$ propagate beamlet along drift space
- moving of slit \rightarrow scan of phase space ($N_x \times N_{x'}$ measurements)

- monitor with x' resolution instead of scan
 SEM, profile grid,...
 - \rightarrow N_x measurements

- 2-dimensional extension: Pepper pot
 - → 1 measurement
 - \rightarrow N_x x N_{x'} holes

P.Forck, Lecture Notes on Beam Instrumentation and Diagnostics, JUAS 2006

Beam Matrix based Measurements

Principle

task: determination of 3 beam matrix elements Σ_{11} , Σ_{22} , Σ_{12} = Σ_{21}

- remember: beam matrix $\Sigma(s)$ depends on location \rightarrow determination at same location
- how to measure element Σ_{12} ???

idea: exploit transformation properties of beam matrix

- instead of beam matrix measurement at one accelerator location \rightarrow (minimum) 3 profile measurements under different conditions
- quadrupole scan
 - o change of matrix elements R via change of beam optics
 - sequential measurement with **one** monitor using **different** quadrupole settings

multi-screen method

- change of matrix elements R via change of monitor positions
- o measurement with **several** monitors using **one** optics setting

Beam Matrix based Measurements

Access to Matrix Elements

profile monitor

- measurement of $\sigma = \sqrt{\Sigma_{11}}$
- other matrix elements can be inferred from beam profiles taken under various transport conditions
 - → knowledge of transport matrix M required: $\Sigma^b = R \cdot \Sigma^a \cdot R^T$ with $R = \begin{pmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{pmatrix}$

measurement of at least 3 profiles for 3 matrix elements

Σ_{11}^a	•	measurement :	profiles	$\sigma^{a,b,c} = \sum_{i=1}^{a,b,c} \Sigma_{11}^{a,b,c}$
$\Sigma_{11}^b = R_{11}^2 \cdot \Sigma_{11}^a + 2R_{11}R_{12} \cdot \Sigma_{12}^a + R_{12}^2 \cdot \Sigma_{22}^a$	•	known:	transport optics	R,\overline{R} N 11
$\Sigma_{11}^c = \overline{R}_{11}^2 \cdot \Sigma_{11}^a + 2\overline{R}_{11}\overline{R}_{12} \cdot \Sigma_{12}^a + \overline{R}_{12}^2 \cdot \Sigma_{22}^a$	•	deduced:	matrix elements	$\Sigma^a_{11}, \Sigma^a_{12}, \Sigma^a_{22}$

 \rightarrow more than 3 profile measurements favourable, data subjected to least-square analysis

quadrupole scan

quadrupole transfer matrix:
$$R_{quad} = \begin{pmatrix} 1 & 0 \\ \pm 1/f & 1 \end{pmatrix}$$
drift space transfer matrix $R_{drift} = \begin{pmatrix} 1 & l \\ 0 & 1 \end{pmatrix}$

Circular Accelerators

Emittance Diagnostics in circular Accelerators

periodicity with circumference L

- one-turn transport matrix: R(s+L) = R(s)
- Courant-Snyder / Twiss parameters $\alpha(s)$, $\beta(s)$, $\gamma(s)$ uniquely defined at each location in ring
- measurement at one location in ring sufficient to determine ε
 - \rightarrow measured quantity: beam profile / angular distribution

Imaging of small Beam Sizes

Fundamental Resolution Limit

point observer detecting photons from point emitter

- simple X-ray imaging system: pinhole camera
- Camera Obscura description of phenomenon already by Aristoteles (384-322 b.C.) in "Problemata"
 - \circ principle

Interference and Coherence

Recall

coherence in classical optics

- ability of interference of light
 - i.e. fix phase relation between wave trains
- contrast of interference pattern
 - o measure for coherence
- spatial coherence
 - o application for transverse beam diagnostics

low degree of coherence

high degree of coherence

• temporal coherence

- application for longitudinal beam diagnostics
 - ightarrow bunch length measurements, Coherent Radiation Diagnostics

T. Mitsuhashi , Proc. Joint US-CERN-Japan-Russia School of Particle Accelerators, Montreux, 11-20 May 1998 (World Scientific), pp. 399-427.

- principle borrowed from astronomy → Michelson's stellar interferometry
- fundamental resolution limit \rightarrow uncertainty principle
 - \circ interferometric measurement requires precise phase determination ($\Delta \Phi$ small)
 - o fluctuation in amplitude (in number of photons Δn) large, i.e. sufficient intensity required

long bunch $(\lambda < \sigma_t)$

short bunch $(\lambda > \sigma_t)$

Page 12

Synchrotron Radiation Interferometer

Mathematical Formulation

Degree of Coherence and Beam Size

1st order degree of spatial coherence

- γ : normalized complex correlation function with $|\gamma| = V$ (visibility)
- intensity distribution of spatial partial coherent source

$$= \left\langle \left| \vec{E}_1 + \vec{E}_2 \right|^2 \right\rangle = I_{inc} \left(1 + \left| \gamma \right| \cdot \cos \varphi' \right) \qquad I_{inc} = I_1 + I_2 \quad \text{und} \quad I_1 \approx I_2$$

 \rightarrow taking into account interference at single slit:

van Cittert-Zernike theorem (far field)

- relation between degree of coherence and intensity distribution in source plane
 - \rightarrow Fourier transform

$$\gamma(D) = \int dy \ f(y) \cdot \exp\{-i2\pi v_y \cdot y\}$$

• spatial equivalent to Wiener-Khinchine theorem (autocorrelation spectroscopy)

$$v_{\rm y} = \frac{D}{\lambda R_0}$$

with

$$I(y_0) = I_{inc} \left[\operatorname{sinc} \left(\frac{2\pi \, \mathrm{a}}{\lambda \, \mathrm{R}} \, y_0 \right) \right]^2 \left[1 + \left| \gamma \right| \cdot \cos \left(\frac{2\pi \, \mathrm{D}}{\lambda \, \mathrm{R}} \, y_0 \, + \, \varphi \right) \right]$$

- Gaussian beam distribution *f(y)*
 - \rightarrow analytical solution of Fourier transform

Contact

Deutsches Elektronen-	Gero Kube
Synchrotron DESY	Machine Diagnostics and Instrumentation (MDI)
	gero.kube@desy.de
www.desy.de	+49 40 8998 3077