Transverse Beam Emittance Diagnostics

CAS - Advanced Accelerator Physics

Gero Kube Spa (Belgium), 11.-22.11.2024

HELMHOLTZ

Accelerator Key Parameters

Light Source vs. Collider

light source: spectral brilliance

• measure for phase space density of photon flux

$$
B = \frac{\text{Number of photons}}{[\text{sec}][\text{mm}^2][\text{mrad}^2][0.1\% \text{ bandwidth}]}
$$

- user requirement: high brightness
	- \rightarrow lot of monochromatic photons on sample
- connection to machine parameters

requirement: high quality accelerator

- high beam current \rightarrow instabilities, high heat load...
- small transverse emittance
	- \rightarrow generate small emittance (lattice design)
	- \rightarrow preserve emittance (instabilities \rightarrow feedback)
	- \rightarrow measure small emittance

collider: luminosity

• measure for the collider performance

$$
\dot{N} = |L \cdot \sigma|
$$

relativistic invariant proportionality factor between cross section σ (property of interaction) and number of interactions per second

- user requirement: high luminosity
	- lot of interactions in reaction channel
- connection to machine parameters

for two identical beams with emittances ε_{x} = ε_{z} = ε

large emittance

DESY. Page 2 | CAS - Transverse Emittance Diagnostics | Gero Kube

Transverse Emittance

Projection of Trace Space Volume

trace space

- space defined by position *x* & divergence *x'*
- separate horizontal, vertical (and longitudinal) plane
- under linear forces (dipoles, quadrupoles)
	- o any particle moves on an ellipse in trace space *(x,x')*
	- o ellipse rotates in magnets and shears along drifts
		- → but area is preserved: **emittance**

(*α, β, γ, ε*: Courant-Snyder or Twiss parameters)

transformation along accelerator

- knowledge of the magnet structure (beam optics) \rightarrow transformation from initial (i) to final (f) location
	-

o single particle transformation o transformation of optical functions

$$
\begin{pmatrix}\n\beta \\
\alpha \\
\gamma\n\end{pmatrix}_{f} = \begin{pmatrix}\nR_{11}^{2} & -2R_{11}R_{12} & R_{12}^{2} \\
-R_{11}R_{21} & 1 + R_{12}R_{21} & -R_{12}R_{22} \\
R_{21}^{2} & -2R_{21}R_{22} & R_{22}^{2}\n\end{pmatrix} \cdot \begin{pmatrix}\n\beta \\
\alpha \\
\gamma\n\end{pmatrix}_{i}
$$

Transverse Emittance Ellipse

Propagation along Accelerator

change of ellipse shape and orientation

• area is preserved

$$
\alpha(s) = -\frac{\beta'(s)}{2}
$$

$$
\gamma(s) = \frac{1 + \alpha^2(s)}{\beta(s)}
$$

 $\mathcal{E} = \gamma(s) x(s)^2 + 2\alpha(s) x(s) x'(s) + \beta(s) x'(s)^2$

Emittance and Beam Matrix

Emittance Representations

beam matrix

$$
\Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix} = \begin{pmatrix} \langle x^2 \rangle & \langle xx' \rangle \\ \langle xx' \rangle & \langle x'^2 \rangle \end{pmatrix} \qquad = \varepsilon \begin{pmatrix} \beta & -\alpha \\ -\alpha & \gamma \end{pmatrix} \qquad \begin{array}{c} \varepsilon_{\text{rms}} \\ \varepsilon_{\text{rms}} \end{array}
$$

$$
\varepsilon = \sqrt{\det \Sigma} = \sqrt{\Sigma_{11} \cdot \Sigma_{22} - \Sigma_{12}^2}
$$

• transformation of beam matrix

$$
\Sigma(s_1) = R\Sigma(s_0)R^T \quad \text{with} \quad R = \begin{pmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{pmatrix}
$$

via Twiss (Courant-Snyder) parameters

$$
\varepsilon = \gamma x^2 + 2\alpha x x' + \beta x'^2
$$

statistical definition

P.M. Lapostolle, IEEE Trans. Nucl. Sci. NS-18, No.3 (1971) 1101

$$
\varepsilon_{\rm rms} = \sqrt{\langle x^2 \rangle \langle x'^2 \rangle - \langle xx' \rangle^2}
$$

with 2^{nd} moments of beam distribution $p(x)$

- ε_{rms} is measure of spread in trace space
- root-mean-square (rms) of distribution

$$
\sigma_x = \left\langle x^2 \right\rangle^{1/2}
$$

- $\epsilon_{\rm rms}$ is useful definition for non-linear beams
	- o usually restriction to certain range
		- → c.f. 90% of particles instead of [-∞,+∞]

 $\int_{-\infty}^{\infty} dx \rho(x)$

 $\int_{-\infty}^{\infty} dx x^2 \cdot \rho(x)$

 $dx \rho(x)$

x $\rho(x)$

 $\rho(x)$

 $\rho(x)$

 χ χ \cdot ρ $\left(\chi$ $\right)$

 $\int_{-\infty}^{\infty} dx x^2 \cdot \rho(x)$

∞ −∞

 $-\infty$ αx .

∞

 $x^- := \xrightarrow{--}$

=

Emittance Measurement

Principle

measurement of projected area of transverse trace space volume

• not directly accessible for beam diagnostics

- accessible quantities
- o beam size
- o beam divergence

$$
\sqrt{\Sigma_{11}} = \sqrt{\langle x^2 \rangle} = \sqrt{\mathcal{E}\,\beta}
$$

- $\Sigma_{22} = \sqrt{\langle x'^2 \rangle} = \sqrt{\varepsilon \gamma}$
- o divergence measurements seldom in use
	- \rightarrow restriction to profile measurements

- measurement schemes
	- o mapping of trace space
		- \rightarrow restrict to (infenitesimal) element in space coordinate, convert angles *x'* in position *x*
- o beam matrix based measurements
	- \rightarrow determination of beam matrix elements

$$
\varepsilon = \sqrt{\det \Sigma} = \sqrt{\Sigma_{11} \cdot \Sigma_{22} - \Sigma_{12}^2}
$$

Trace Space Mapping

Principle

slit scan method

- low energy beams often space charge limited \rightarrow cutting out small beamlet
- slit produces vertical slice in transverse phase space
- measure intensity as function of $x' \rightarrow$ propagate beamlet along drift space
- moving of slit → scan of phase space (**N^x** x **Nx'**measurements)

- 2-dimensional extension: Pepper pot
	- \rightarrow 1 measurement
	- \rightarrow **N**_x x **N**_{x'} holes

P.Forck, *Lecture Notes on Beam Instrumentation and Diagnostics*, JUAS 2006

slit **x ε**

x'

- monitor with x' resolution instead of scan
	- o SEM, profile grid,…
		- \rightarrow **N**_x measurements

Beam Matrix based Measurements

Principle

task: determination of 3 beam matrix elements Σ_{11} **,** Σ_{22} **,** $\Sigma_{12} = \Sigma_{21}$

- remember: beam matrix $\Sigma(s)$ depends on location \rightarrow determination at same location
- how to measure element Σ_{12} ???

idea: exploit transformation properties of beam matrix

- instead of beam matrix measurement at one accelerator location → (minimum) 3 **profile** measurements under different conditions
- quadrupole scan
	- o change of matrix elements R via **change of beam optics**
	- o sequential measurement with **one** monitor using **different** quadrupole settings

• multi-screen method

- o change of matrix elements R via **change of monitor positions**
- o measurement with **several** monitors using **one** optics setting

Beam Matrix based Measurements

Access to Matrix Elements

profile monitor

- measurement of $\sigma = \sqrt{\Sigma_{11}}$
- other matrix elements can be inferred from beam profiles taken under various transport conditions
	- \rightarrow knowledge of transport matrix M required: $\Sigma^p = R \cdot \Sigma^q \cdot R^p$ with $R = \begin{pmatrix} R_{11} & R_{12} \\ R_{11} & R_{22} \end{pmatrix}$ R_{21} R_{22} $\Sigma^b = R \cdot \Sigma^a \cdot R^T$

measurement of at least 3 profiles for 3 matrix elements

 \rightarrow more than 3 profile measurements favourable, data subjected to least-square analysis

quadrupole scan

$$
R_{quad} = \begin{pmatrix} 1 & 0 \\ \pm 1/f & 1 \end{pmatrix}
$$

\n
$$
R_{drift} = \begin{pmatrix} 1 & l \\ 0 & 1 \end{pmatrix}
$$
 $R = R_{quad} R_{drift}$

DESY. Page 9 | CAS - Transverse Emittance Diagnostics | Gero Kube

Circular Accelerators

Emittance Diagnostics in circular Accelerators

periodicity with circumference L

- one-turn transport matrix: $R(s+L) = R(s)$
- Courant-Snyder / Twiss parameters $\alpha(s)$, $\beta(s)$, $\gamma(s)$ uniquely defined at each location in ring
- measurement at one location in ring sufficient to determine ε
	- \rightarrow measured quantity: beam profile / angular distribution

Imaging of small Beam Sizes

Fundamental Resolution Limit

point observer detecting photons from point emitter

- simple X-ray imaging system: pinhole camera
- Camera Obscura description of phenomenon already by Aristoteles (384-322 b.C.) in "Problemata"
	-

DESY. Page 11 | CAS - Transverse Emittance Diagnostics | Gero Kube

Interference and Coherence

Recall

coherence in classical optics

- ability of interference of light
	- o i.e. fix phase relation between wave trains
- contrast of interference pattern
	- o measure for coherence
- spatial coherence
	- o application for transverse beam diagnostics

low degree of coherence

high degree of coherence

temporal coherence

- o application for longitudinal beam diagnostics
	- \rightarrow bunch length measurements, Coherent Radiation Diagnostics

T. Mitsuhashi , Proc. Joint US-CERN-Japan-Russia School of Particle Accelerators, Montreux, 11-20 May 1998 (World Scientific), pp. 399-427.

- principle borrowed from astronomy \rightarrow Michelson's stellar interferometry
- fundamental resolution limit \rightarrow uncertainty principle
	- o interferometric measurement requires precise phase determination $(\Delta \Phi$ small)
	- o fluctuation in amplitude (in number of photons Δn) large, i.e. sufficient intensity required

) short bunch $(λ>σ_t)$

long bunch $(λ < σ₊)$

Synchrotron Radiation Interferometer

Mathematical Formulation

Degree of Coherence and Beam Size

1 st order degree of spatial coherence

- y : normalized complex correlation function with $|\gamma|$ = **V** (visibility)
- intensity distribution of spatial partial coherent source

$$
I = \left\langle \left| \vec{E}_1 + \vec{E}_2 \right|^2 \right\rangle = I_{inc} \left(1 + |\gamma| \cdot \cos \varphi' \right) \qquad I_{inc} = I_1 + I_2 \text{ und } I_1 \approx I_2
$$

 \rightarrow taking into account interference at single slit:

van Cittert-Zernike theorem (far field)

- relation between degree of coherence and intensity distribution in source plane
	- \rightarrow Fourier transform

$$
\gamma(D) = \int dy f(y) \cdot \exp\{-i2\pi v_y \cdot y\}
$$

 $\sqrt{|\vec{E}_1|^2 \cdot |\vec{E}_2|^2}$ with $|\gamma| =$
tensity distribution of spatial partial coher
 $I = \langle |\vec{E}_1 + \vec{E}_2|^2 \rangle = I_{inc} (1 + |\gamma| \cdot \cos \varphi)$
 \rightarrow taking into account interference at sin
:ittert-Zernike theorem (far field)
elation betwee • spatial equivalent to Wiener-Khinchine theorem (autocorrelation spectroscopy)

$$
V_{y} = \frac{D}{\lambda R_{0}}
$$

with

$$
I(y_0) = I_{inc} \left[\text{sinc} \left(\frac{2\pi a}{\lambda R} y_0 \right) \right]^2 \left[1 + |\gamma| \cdot \text{cos} \left(\frac{2\pi D}{\lambda R} y_0 + \varphi \right) \right]
$$

- Gaussian beam distribution $f(y)$
	- \rightarrow analytical solution of Fourier transform

DESY. | CAS - Transverse Emittance Diagnostics | Gero Kube **Page 14 Page 14**

Contact

