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Accelerator Key Parameters 
Light Source vs. Collider
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light source:  spectral brilliance

• measure for phase space density of photon flux

• user requirement: high brightness

→ lot of monochromatic photons on sample

• connection to machine parameters
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collider:  luminosity

• measure for the collider performance

• user requirement: high luminosity

→ lot of interactions in reaction channel

• connection to machine parameters

relativistic invariant proportionality factor between cross section σ
(property of interaction) and number of interactions per second
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 for two identical beams with emittances εx = εz = ε

requirement: high quality accelerator

ip


x

z

s

bunch small emittance

large emittance

• high beam current →   instabilities, high heat load…

• small transverse emittance

→ generate small emittance (lattice design)

→ preserve emittance (instabilities →  feedback)

→ measure small emittance
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Transverse Emittance
Projection of Trace Space Volume 

trace space

• space defined by position x &   divergence x‘

• separate horizontal, vertical (and longitudinal) plane

• under linear forces (dipoles, quadrupoles)

o any particle moves on an ellipse in trace space (x,x’)

o ellipse rotates in magnets and shears along drifts

→ but area is preserved:  emittance
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( α, β, γ, ε: Courant-Snyder or Twiss parameters )
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transformation along accelerator

• knowledge of the magnet structure  (beam optics)   →   transformation from initial (i) to final (f) location

o single particle transformation o transformation of optical functions
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Transverse Emittance Ellipse 
Propagation along Accelerator 

change of ellipse shape and orientation

• area is preserved
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beam envelope: )(s

beam waist:

→  minimum in envelope →  minimum in β  →  β΄ = 0   → α = 0
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Emittance and Beam Matrix 
Emittance Representations

via Twiss (Courant-Snyder) parameters

| CAS - Transverse Emittance Diagnostics | Gero Kube

22 ''2 xxxx  ++=

statistical definition

• εrms is measure of spread in trace space

• root-mean-square (rms) of distribution 

• εrms is useful definition for non-linear beams

o usually restriction to certain range

→ c.f. 90% of particles instead of [-∞,+∞]
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P.M. Lapostolle, IEEE Trans. Nucl. Sci. NS-18, No.3 (1971) 1101
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with 2nd moments of beam distribution ρ(x)

2/1
2xx =


















=












=

2

2

2221

1211

xxx

xxx









−

−
=






beam matrix
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• transformation of beam matrix
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Emittance Measurement
Principle

measurement of projected area of transverse trace space volume

• not directly accessible for beam diagnostics
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o beam divergence == 2

22 'x

o beam size == 2

11 x

• accessible quantities

o divergence measurements seldom in use

→ restriction to profile measurements

• measurement schemes

o mapping of trace space

→ restrict to (infenitesimal) element in space

coordinate, convert angles x‘ in position x

o beam matrix based measurements

→ determination of beam matrix elements

2

122211det −==
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Trace Space Mapping
Principle

slit scan method

• low energy beams often space charge limited   →   cutting out small beamlet 

• slit produces vertical slice in transverse phase space

• measure intensity as function of x’   →   propagate beamlet along drift space

• moving of slit →   scan of phase space  (Nx x Nx' measurements)
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slit

x'

x

ε

M.P.Stockli, Proc. BIW 2006, p.25

• monitor with x' resolution instead of scan

o SEM, profile grid,… 

→ Nx measurements

• 2-dimensional extension: Pepper pot

→ 1 measurement

→ Nx x Nx' holes

P.Forck, Lecture Notes on Beam Instrumentation and Diagnostics, JUAS 2006
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Beam Matrix based Measurements
Principle

task: determination of 3 beam matrix elements Σ11, Σ22, Σ12= Σ21

• remember: beam matrix Σ(s) depends on location   →   determination at same location

• how to measure element Σ12 ???
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idea: exploit transformation properties of beam matrix 

• instead of beam matrix measurement at one accelerator location   →   (minimum) 3 profile measurements under different conditions

• quadrupole scan

o change of matrix elements  R via change of beam optics

o sequential measurement with one monitor using different

quadrupole settings

• multi-screen method

o change of matrix elements  R via change  of monitor positions

o measurement with several monitors using one optics setting
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Beam Matrix based Measurements
Access to Matrix Elements

profile monitor

• measurement of  

• other matrix elements can be inferred from beam profiles taken under various transport conditions

→ knowledge of transport matrix M  required:                                                                                     with

| CAS - Transverse Emittance Diagnostics | Gero Kube

𝑅 =
𝑅11 𝑅12

𝑅21 𝑅22
Σ𝑏 = 𝑅 ⋅ Σ𝑎 ⋅ 𝑅𝑇

11=

→    more than 3 profile measurements favourable, data subjected to least-square analysis

Σ11
𝑐 = 𝑅11

2
⋅ Σ11

𝑎 + 2𝑅11𝑅12 ⋅ Σ12
𝑎 + 𝑅12

2
⋅ Σ22

𝑎

Σ11
𝑎 • measurement : profiles 𝜎𝑎,𝑏,𝑐 = Σ11

𝑎,𝑏,𝑐

Σ11
𝑎 , Σ12

𝑎 , Σ22
𝑎

measurement of at least 3 profiles for 3 matrix elements

Σ11
𝑏 = 𝑅11

2 ⋅ Σ11
𝑎 + 2𝑅11𝑅12 ⋅ Σ12

𝑎 + 𝑅12
2 ⋅ Σ22

𝑎 𝑅, 𝑅• known: transport optics

• deduced: matrix elements

quadrupole scan 

Rquad

(f = 1/k) Rdrift (drift space)

𝑅𝑞𝑢𝑎𝑑 =
1 0

±1/𝑓 1quadrupole transfer matrix:

𝑅𝑑𝑟𝑖𝑓𝑡 =
1 𝑙
0 1drift space transfer matrix

R =Rquad Rdrift
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Circular Accelerators
Emittance Diagnostics in circular Accelerators 

periodicity with circumference L

• one-turn transport matrix:   R(s+L) = R(s)

• Courant-Snyder / Twiss parameters α(s), β(s), γ(s) uniquely defined at each 

location in ring

• measurement at one location in ring sufficient to determine ε

→ measured quantity:     beam profile / angular distribution
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beam size

beam divergence

classification beam spot
wavefront
manipulation

spatial resolving
detector (CCD)

• imaging

→ beam size

• interference

→ beam size

• projection

→ beam divergence

image size

interference
pattern

angular 
distribution
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Imaging of small Beam Sizes
Fundamental Resolution Limit

point observer detecting photons from point emitter
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uncertainty principle:

high resolution:          (i)  small λ (ii)  high NA
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observer
Δx

lens

point emitter

( example PETRA III:   E = 6 GeV,   λ = 500 nm )Δσres ≈ 140 μm σbeam,v ≈ 12 μm

• simple X-ray imaging system:   pinhole camera

• Camera Obscura - description of phenomenon already by Aristoteles (384-322 b.C.) in „Problemata“

X-ray imaging

o principle o realization for emittance diagnostics

P.Elleaume et al., 
J.Synchrotron Rad.  2 
(1995) , 209
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Interference and Coherence
Recall

coherence in classical optics

• ability of interference of light

o i.e. fix phase relation between wave trains

• contrast of interference pattern

o measure for coherence
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high degree of 
coherence

low degree of 
coherence

long bunch (λ<σt) short bunch (λ>σt)

• temporal coherence

o application for longitudinal beam diagnostics

→ bunch length measurements, Coherent Radiation Diagnostics

• spatial coherence

o application for transverse beam diagnostics

synchrotron radiation interferometer

• principle borrowed from astronomy   →   Michelson‘s stellar interferometry 

T. Mitsuhashi , Proc. Joint US-CERN-Japan-Russia School of Particle Accelerators, Montreux, 11-20 May 1998 (World Scientific), pp. 399-427.

1n• fundamental resolution limit   →   uncertainty principle

o interferometric measurement requires precise phase determination   (ΔΦ small)

o fluctuation in amplitude (in number of photons Δn) large, i.e. sufficient intensity required
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Synchrotron Radiation Interferometer
Principle

point source
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1V 

extended source

contrast quantification

visibility

1V =

minmax

minmax

II

II
V

+

−
=

visibility contains information about source size
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Mathematical Formulation
Degree of Coherence and Beam Size

1st order degree of spatial coherence
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γ :   normalized complex correlation function

with γ׀ ׀ = V  (visibility)
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• intensity distribution of spatial partial coherent source

→ taking into account interference at single slit:
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• spatial equivalent to Wiener-Khinchine theorem

(autocorrelation spectroscopy)

van Cittert-Zernike theorem (far field)

• relation between degree of coherence and intensity distribution in source plane

→ Fourier transform
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spatial frequency

(in line pairs / mm)

with

• Gaussian beam distribution f(y)

→ analytical solution of Fourier transform

𝜎𝑦 =
𝜆𝑅0

𝜋𝐷
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𝛾 𝐷



Contact

Deutsches Elektronen-

Synchrotron DESY

www.desy.de

Gero Kube

Machine Diagnostics and Instrumentation (MDI)

gero.kube@desy.de

+49 40 8998 3077


