Models for FPA/SPA and Interlocks

Energy Extraction Universal Controls #6

Model with the FSPA card Description

FSPA card has internal redundancy leading to complete crossing of the output signals inside:

- Signals ST LOOP A 1 and ST LOOP A 2 going to CNTL 1
- Signals ST LOOP A 1R and ST LOOP A 2R going to CNTL 2

Control boards inputs are coming from two redundant paths of the **FSPA card**; outputs are provided to two **driver cards**. The **driver cards** have a redundant and non-reduntant paths.

Given the model, we pessimistically assume that there is just one path (i.e., as if the card was non-redundant).

Model with the FSPA card Results

Assumptions:

- One FSPA card per system
- Simplified models for calculations:
 - driver model with just 1002 redundant path
 - FSPA card without additional internal redundancies
- → with yearly testing & two fully redundant paths for switch opening, the reliability requirements are met

Model with interlocks Description

X 24

Model with interlocks Results

Assumptions:

- Between 600A and 13kA case, 13kA considered more critical
 - Taken as baseline and results scaled to all EE systems
 - Demand parameter scan (blue line is one demand per 32 systems per year)
 - 24 critical interlocks assumed
 - Test every three years
- → with yearly tests, and critical interlock rates <= 1 per 32 EE systems, the reliability requirements are met
 - Further gains possible if possible single points of failure in interlock card mitigated (last meeting)
 - Yearly testing of interlocks

home.cern