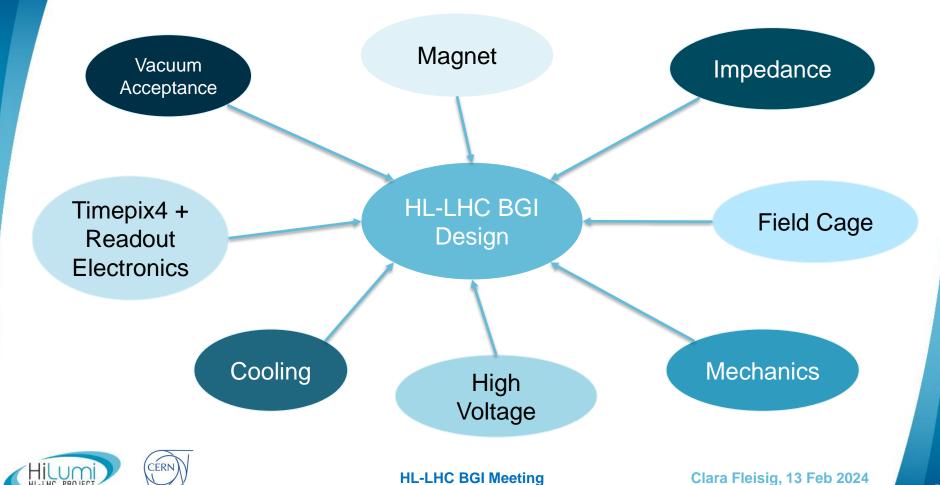


HL-LHC-BGI: Design Ideas with Timepix4


Clara Fleisig

HL-LHC BGI Design Requirements

Conceptual Design Considerations

Goal #1. Provides measurements with < 1% systematic uncertainties (consider beam size contribution to emittance uncertainty, and beam

Design Considerations	Pre-Build Testing	Verification
 Large electrodes should be sufficiently large to ensure uniform E-field Electrodes should be parallel to prevent profile distortion Magnetic field must be sufficiently high and uniform Electrodes and magnet should be well aligned 	 CST & IPM simulations with worst-case scenario beams (e.g. worst beam position & space charge) Check uniformity of electric and magnetic fields with CST Simulate misalignment within tolerances with CST and IPM? 	Compare BGI measurements with those of other instruments

Conceptual Design Considerations

Goal #2. BGI should fit the given space

Design Considerations	Pre-Build Testing	Verification
 Accommodate 50 mm LHC beam-pipe Fit inside existing 7 Tesla magnet ~10 mm of space required for electronics and cooling 	CAD model with attention to tolerances	 Smooth installation process

Goal #3. Meet LHC standards for installation (e.g. vacuum, HV, impedance)

	΄ • • • • • • • • • • • • • • • • • • •	• •
Design Considerations	Pre-Build Testing	Verification
 Follow HV design guidelines (e.g. 3 kV/mm in vacuum) Minimize sudden changes in beam-pipe No materials with high outgassing 	Design approval from vacuum groupImpedance simulations	HV testingVacuum acceptance test

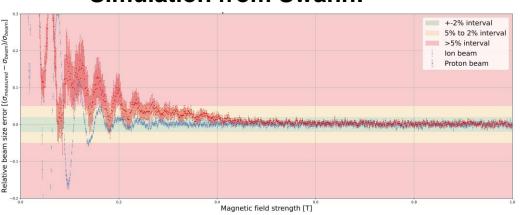
Conceptual Design Considerations

Goal #4. Bunch-by-bunch Measurements

Design Considerations	Pre-Build Testing	Verification
 Increase electric field so electron arrivals from one bunch do not overlap with those from the next bunch 	• Calculate $t_{drift} = \sqrt{\frac{2xm}{qE}} \ll 25 ns$	Compare bunch-by- bunch measurements with other instruments

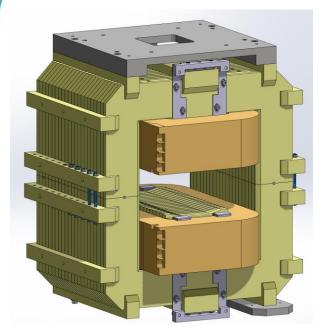
Goal #5. Increase event rate

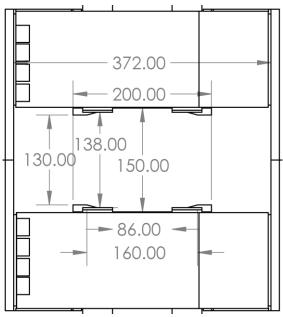
Design Considerations	Pre-Build Testing	Verification
 High electric field integrated over ionised electron path length Thin entrance window if necessary 	Compare electric field with PS and SPS instruments to predict event rate	 Measurement with < 5% uncertainties integrating over period where beam is stationary


Mechanical Design Constraints

Magnet Requirements

Simulation from Swann:




Conclusion: We need >0.6 T uniform magnetic field

0.7 Tesla Magnet from Magnet Group

- Max flange size that fits is a CF300
- All designs with flange sizes > CF100 only have 130mm of vertical space
- We are very limited on vertical space

Other Constraints

Aperture Size

 50 mm diameter aperture that must be "clear" for the beam to pass through

High Voltage Design (-30 kV)

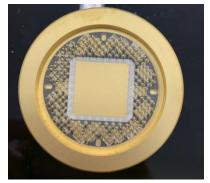
- Minimum 10 mm vacuum gap
- Minimum 30 mm along insulator surfaces
- Minimum 7.5 mm within good bulk insulator material

Current Design Idea

Objectives for 4DPhoton Based Design

Reduce cost

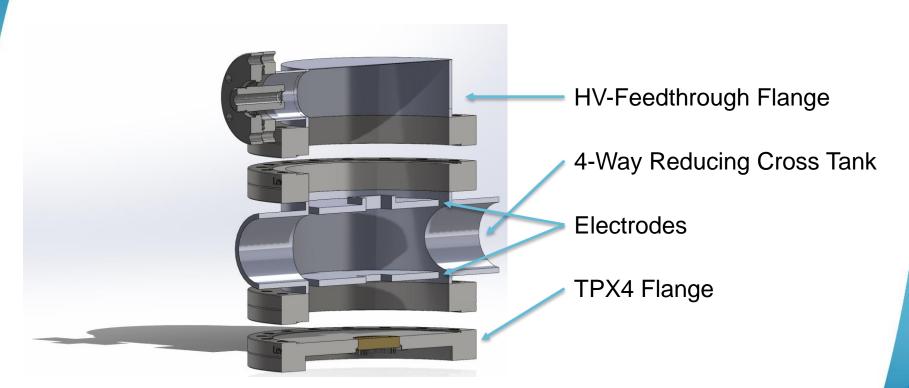
Use standard CF flanges instead of custom rectangular CF flange


Reduce complexity

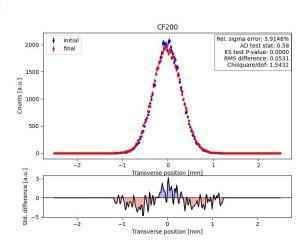
Electronics and cooling outside of vacuum

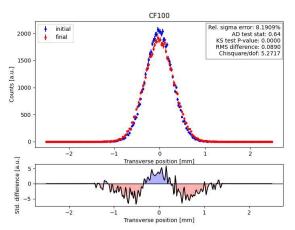
Modular design

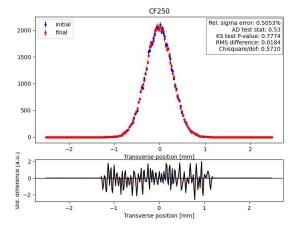
- Could use most of the same components on different accelerators, with acceleratorunique 4-way cross
- Easier to replace single components (e.g. replace Timepix, but use the same tank)

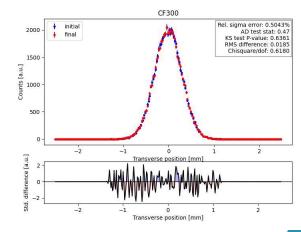


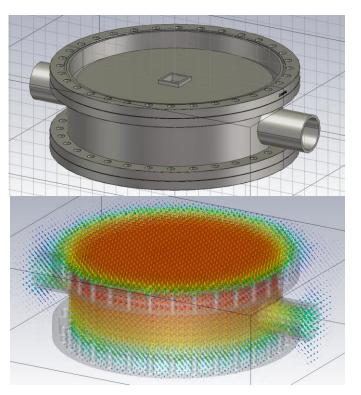
Design Concept




Choosing Flange Sizes and Electrodes




Varying Flange Size



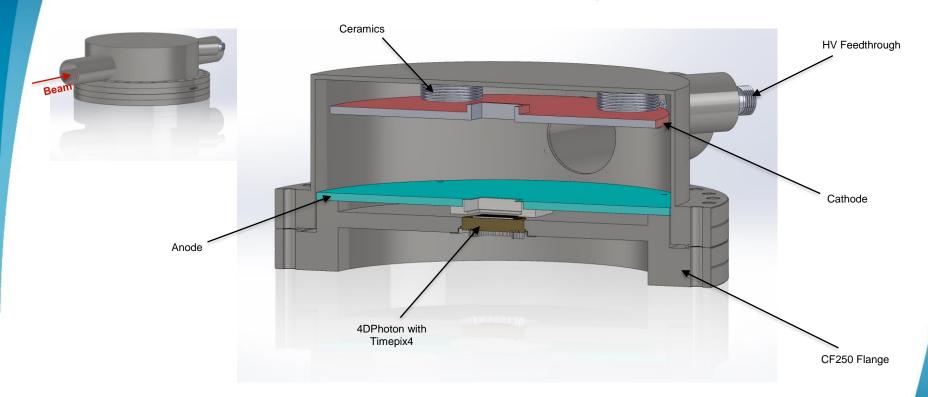
Varying Flange Size Recommendations

Other Considerations

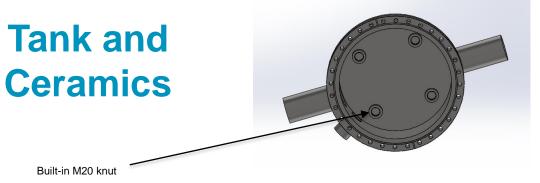
- As flange size increases, so does flange thickness
- > CF250 require M10 instead of M8 screws

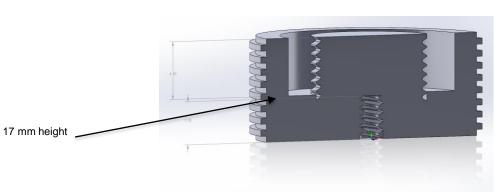
Recommendation

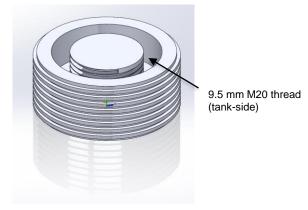
 Recommend using CF250, given current information

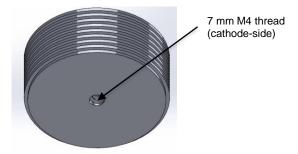


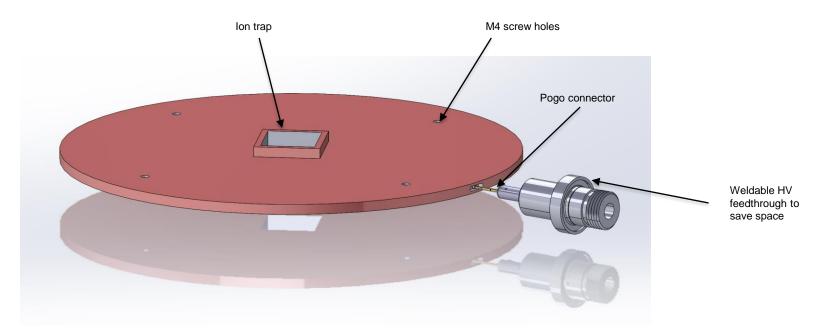
Design Idea for Simulation

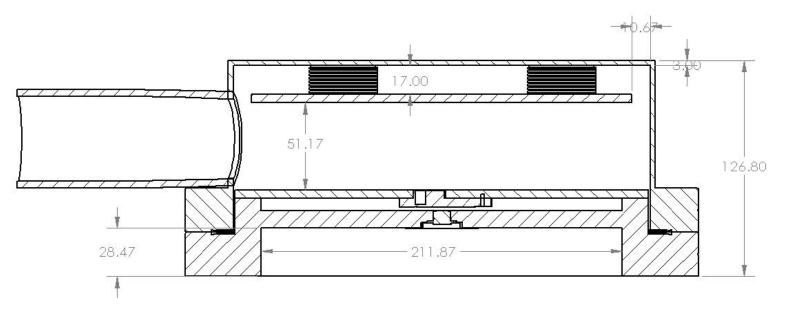



Full Assembly

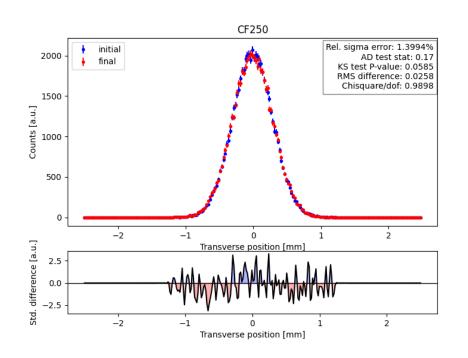







HV Feedthrough and Cathode

Dimensions



SECTION C-C SCALE 1:2

Conceptual Design Simulation Results

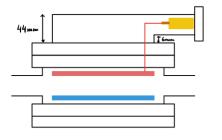
- Simulated with 0.7 T uniform magnetic field
- Used full CAD model of current conceptual design idea
- Assumed -30 kV HV

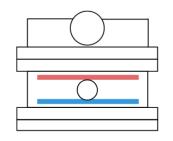
Appendix

Standard Flanges

Name	Thickness (mm)	Flange OD (mm)	Screws
CF63	17.3	131.5	M8
CF75	19,1	117.5	M8
CF100	19.8	151.6	M8
CF125	21.3	171.5	M8
CF150/160	22.4	202.4	M8
CF200	24.6	253.2	M8
CF250	25.9	304.0	M8
CF275	28.4	336.6	M10
CF300	28.5	368.3	M10

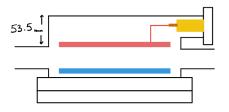
HV Feedthrough Design Ideas

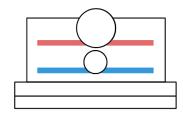

Name


Side View

Front View

Height

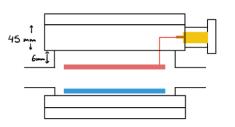

1a – Elbow HV

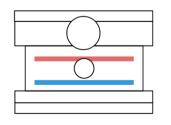


 $100 + 4\Delta y_{flange}$ ≈ $204 \, mm$

1b – Elbow HV

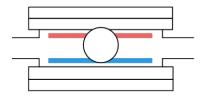
 $110 + 2\Delta y_{flange}$ ≈ $162 \, mm$

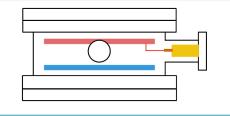

Name


Side View

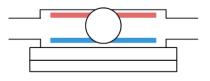
Front View

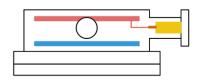
Height


In-Flange HV



 $107 + 3\Delta y_{flange}$ ≈ $185 \, mm$


3a – Side HV



 $62 + 4\Delta y_{flange}$ $\approx 166 \, mm$

3b – Side HV

 $70 + 2\Delta y_{flange}$ ≈ $122 \, mm$

Recommendation

- 3b is best case, but will likely have impedance issues
- 1b is second best case, but will likely not fit inside magnet
- Simulate impedance for 1b and 3b
- Investigate impedance mitigation for 3b
- Inquire about 4 cm increase in magnet size for 1b

