# Focus topic meeting "ttbar threshold"

Marcel Vos, IFIC, CSIC/UV, Valencia, Spain

### February 2024

Expert team: M. Beneke (TUM, theory), F. Cornet (Case Western, theory), M. Defranchis (CERN, CMS), G. Durieux (Louvain, theory), A. Hoang (U. Vienna, theory), A. Jafari (DESY, CMS), Y. Kiyo (theory), V. Miralles (Manchester, theory), M. Moreno (IFIC, ATLAS), L. Pintucci (Trieste, ATLAS), Jürgen Reuter (DESY), R. Schwienhorst (Michigan State, ATLAS), F. Simon (KIT, e+e-), F. Zarnecki (Warsaw, e+e-)

R. Franceschini, A. Irles J. de Blas (related focus topics), P. Azzi (liaison FCCee)



1

## **Practical**

### The ECFA focus topics document is out: https://arxiv.org/abs/2401.07564

#### Focus topics for the ECFA study on Higgs / Top / EW factories

Juan Alcaraz Maestre<sup>1</sup>, Juliette Alimena<sup>2</sup>, John Alison<sup>3</sup>, Patrizia Azzi<sup>4</sup>, Paolo Azzurri<sup>5</sup>, Emanuele Bagnaschi<sup>6,7</sup>, Timothy Barklow<sup>8</sup>, Matthew J. Basso<sup>9</sup>, Josh Bendavid<sup>10</sup>, Martin Beneke<sup>11</sup>, Eli Ben-Haim<sup>12</sup>, Mikael Berggren<sup>2</sup>, Jorge de Blas<sup>13</sup>, Marzia Bordone<sup>6</sup>, Ivanka Bozovic<sup>14</sup>, Valentina Cairo<sup>6</sup>, Nuno Filipe Castro<sup>15</sup>, Marina Cobal<sup>16</sup>, Paula Collins<sup>6</sup>, Mogens Dam<sup>17</sup>, Valerio Dao<sup>6</sup>, Matteo Defranchis<sup>6</sup>, Ansgar Denner<sup>18</sup>, Stefan Dittmaier<sup>19</sup>, Gauthier Durieux<sup>20</sup>, Ulrich Einhaus<sup>2</sup>, Mary-Cruz Fouz1, Roberto Franceschini21, Ayres Freitas22, Frank Gaede2, Gerardo Ganis6, Pablo Goldenzweig<sup>23</sup>, Ricardo Gonçalo<sup>24,25</sup>, Rebeca Gonzalez Suarez<sup>26</sup>, Loukas Gouskos<sup>27</sup>, Alexander Grohsjean<sup>28</sup>, Jan Hajer<sup>29</sup>, Chris Hays<sup>30</sup>, Sven Heinemeyer<sup>31</sup>, André Hoang<sup>32</sup>, Adrián Irles<sup>33</sup>, Abideh Jafari<sup>2</sup>, Karl Jakobs<sup>19</sup>, Daniel Jeans<sup>34</sup>, Jernej F. Kamenik<sup>35</sup>, Matthew Kenzie<sup>36</sup>, Wolfgang Kilian<sup>37</sup>, Markus Klute<sup>23</sup>, Patrick Koppenburg<sup>38</sup>, Sandra Kortner<sup>39</sup>, Karsten Köneke<sup>19</sup>, Marcin Kucharczyk<sup>40</sup>, Christos Leonidopoulos<sup>41</sup>, Cheng Li<sup>42</sup>, Zoltan Ligeti<sup>43</sup>, Jenny List<sup>2</sup>, Fabio Maltoni<sup>20</sup>, Elisa Manoni<sup>44</sup>, Giovanni Marchiori<sup>45</sup>, David Marzocca<sup>46</sup>, Andreas B. Meyer<sup>2</sup>, Ken Mimasu<sup>48</sup>, Tristan Miralles<sup>47</sup>, Victor Miralles<sup>49</sup>, Abdollah Mohammadi<sup>50</sup>, Stéphane Monteil<sup>51</sup> Gudrid Moortgat-Pick28, Zohreh Najafabadi52, María Teresa Núñez Pardo de Vera2, Fabrizio Palla5, Michael E. Peskin<sup>8</sup>, Fulvio Piccinini<sup>53</sup>, Laura Pintucci<sup>54</sup>, Wiesław Płaczek<sup>55</sup>, Simon Plätzer<sup>56,32</sup>, Roman Pöschl<sup>57</sup>, Tania Robens<sup>58</sup>, Aidan Robson<sup>59</sup>, Philipp Roloff<sup>6</sup>, Nikolaos Rompotis<sup>60</sup>, Andrej Saibel<sup>33</sup>, André Sailer<sup>6</sup>, Roberto Salerno<sup>61</sup>, Matthias Schott<sup>62</sup>, Reinhard Schwienhorst<sup>63</sup>, Felix Sefkow<sup>2</sup>, Michele Selvaggi<sup>6</sup>, Frank Siegert<sup>64</sup>, Frank Simon<sup>23</sup>, Andrzej Siodmok<sup>55</sup>, Torbjörn Sjöstrand<sup>65</sup>, Kirill Skovpen<sup>66</sup>, Maciej Skrzypek<sup>40</sup>, Yotam Soreq<sup>67</sup>, Raimund Ströhmer<sup>18</sup>, Taikan Suehara<sup>68</sup>, Junping Tian<sup>68</sup>, Emma Torro Pastor<sup>33</sup>, Maria Ubiali<sup>36</sup>, Luiz Vale Silva<sup>33</sup>, Caterina Vernieri<sup>8</sup>, Alessandro Vicini<sup>69</sup> Marcel Vos<sup>33</sup>, Aidan R. Wiederhold<sup>70</sup>, Sarah Louise Williams<sup>36</sup>, Graham Wilson<sup>71</sup>, Aleksander Filip Zarnecki<sup>72</sup>, Dirk Zerwas<sup>73,57</sup>

There is a mailing list for this group:

https://gitlab.in2p3.fr/ecfa-study/ECFA-HiggsTopEW-Factories/-/wikis/FocusTopics/TTthresh

You may have received the announcement twice, because not everyone was on the list yet

# The $t\bar{t}$ threshold scan



## e+e- threshold scan

A scan of the e<sup>+</sup>e<sup>-</sup> center-of-mass energy through the pair production threshold allows for the ultimate mass measurement (*Gusken & Kuhn '85, Peskin & Strassler '91*) Experimental studies: Martinez & Miquel, hep-ph/020735, Seidel et al., arXiv:1303.3758 **Part of the operation plan for all e+e- collider projects: Higgs & top factory!** 



The threshold position is sensitive to the top quark mass, the shape to the width The normalization is sensitive to strong coupling and top quark Yukawa coupling Just measure the cross section vs. sqrt(s) shape and derive all parameters

# **Top quark mass**



Frank Simon's seminar Snowmass top physics report

Statistical uncertainty - - - - can be made small with 1-2 years of operation

Theory uncertainty ..... requires calculation beyond NNNLO (QCD) + NNLO (EW). Resummation is available and can be added.

Note: interpretation unambiguous, translation to MS scheme with O(10 MeV) QCD scale uncertainty, parametric uncertainty from  $\alpha_s$  requires care, as well as EW corrections

Top quark mass to **approx. 50 MeV**, limited by theory uncertainty and to first order independent of collider design (luminosity spectrum has 2nd order effect)

Top quark width to 45 MeV  $\rightarrow$  bounds on invisible decays+SMEFT arXiv:1907.00997 Precision for  $\alpha_s \sim 0.001$  and  $y_t \sim 12\%$  not competitive, but good cross-checks

Focus Topic Feb. 24

## **Future directions**

Exp: Full-simulation study to revisit and harmonize experimental systematic uncertainties
Theo: Fully differential predictions at adequate precision
Specify procedure for comparison of data and theory (i.e. treatment of ISR?)
Study width prospects in more detail (i.e. comparison LHC, interpretation in NP scenarios)
Embed top mass prospect in global EW fit environment
Find a way to make top Yukawa and strong coupling results more competitive

#### Theoretical and phenomenological targets

- Complete and harmonised assessment of systematic uncertainties on SM parameters extracted from the threshold scan.
- Degeneracies in a EFT analysis including only "one" energy point. How to disentangle effects combining with other (non-top-quark) measurements. Indirect constraints on top Yukawa.

#### MC samples needed

Basic samples available as listed in the Motivation Section, dedicated samples for threshold scan are needed.

#### Existing tools / examples

- ILD tt analysis https://github.com/ILDAnaSoft/ILDbench\_QQbar

#### **Contact & Further Information**

- Gitlab wiki: https://gitlab.in2p3.fr/ecfa-study/ECFA-HiggsTopEW-Factories/-/wikis/ FocusTopics/TTthresh
- Sign up for egroup: ECFA-WHF-FT-TTthres@cern.ch via http://simba3.web.cern.ch/simba3/ SelfSubscription.aspx?groupName=ecfa-whf-ft-ttthres
- and/or email the conveners of ECFA WG1 GLOBal group: mailto:ecfa-whf-wg1-glob-conveners@cern.ch

### Focus Topic Feb. 24

### **Towards a standard sample**

WHIZARD sample in preparation by M.V. (with help from J. Reuter, J. Tian)

 $e+e- \rightarrow 6$  fermions (bb, 2 charged leptons, 2 neutrinos)

- Mostly e+e-  $\rightarrow$  tt  $\rightarrow$  WbWb, with all W decays, but see next slide
- Using SM\_CKM (leading order, no threshold enhancement)

With luminosity spectrum and ISR

- ILC 350, also FCCee is possible
- Polarization is possible?

| 11 -11 1.725000000E+02 1.725000000E+02 -1 -1 -1 -1 3 1                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------|
| 7.4445392535E-04 1.3433748188E-05 1.0000000000E+00 1                                                                                   |
| <pre>kgenerator version="3.1.4"&gt;WHIZARD</pre>                                                                                       |
| xsecinfo neve="10000" totxsec="7.4445392535E-04" />                                                                                    |
| doi: 10.100</th                                                                                                                        |
| kevent>                                                                                                                                |
| 147 1 1.000000000E+00 3.4499999996E+02 -1.000000000E+00 1.1780000000E-01                                                               |
| 11 -9 0 0 0 0 0.000000000E+00 0.00000000E+00 1.7250000000E+02 1.7250000000E+02 0.000000000E+00 0.000000000E+00 9.000000000E+00         |
| -11 -9 0 0 0 0 0.0000000000E+00 0.000000000E+00 -1.7250000000E+02 1.7250000000E+02 0.000000000E+00 0.000000000E+00 9.000000000E+00     |
| 11 2 1 2 0 0 0.0000000000E+00 0.00000000E+00 1.7249999996E+02 1.7249999996E+02 0.0000000000E+00 0.000000000E+00 9.000000000E+00        |
| -11 2 1 2 0 0 0.0000000000E+00 0.00000000E+00 -1.7249999999E+02 1.7249999999E+02 0.000000000E+00 0.000000000E+00 9.000000000E+00       |
| 11 -1 3 0 0 0 2.0845224664E-18 -3.5864870827E-18 1.7249999996E+02 1.7249999996E+02 5.1100927662E-04 0.0000000000E+00 9.000000000E+00   |
| -11 -1 4 0 0 0 4.4784651592E-11 -9.2536895478E-11 -1.7249999999E+02 1.7250000000E+02 5.1098791857E-04 0.0000000000E+00 9.000000000E+00 |
| 22 1 3 0 0 0 -2.0844242199E-18 3.5862840720E-18 5.0849668854E-19 4.1790939994E-18 0.000000000E+00 0.00000000E+00 9.000000000E+00       |
| 22 1 4 0 0 0 -4.4784651592E-11 9.2536895478E-11 1.4514972623E-10 1.7786844877E-10 0.0000000000E+00 0.00000000E+00 9.000000000E+00      |
| 13 2 5 6 0 0 1.1235558615E+01 -1.3523220158E+01 1.4833737471E+01 2.3003369931E+01 -3.3717478809E-07 0.0000000000E+00 9.000000000E+00   |
| -13 2 5 6 0 0 -1.7754951862E+01 3.3867081191E+01 1.6676514299E+01 4.1717186304E+01 1.2615925365E-06 0.000000000E+00 9.000000000E+00    |
| 14 2 5 6 0 0 3.3779281573E+01 -2.8776514815E+01 1.0964769923E+01 4.5709450313E+01 6.7434957617E-07 0.000000000E+00 9.00000000E+00      |
| -14 2 5 6 0 0 3.6755202780E+01 9.9755192092E+01 -1.9502094063E+01 1.0808503575E+02 -1.3486991523E-06 0.000000000E+00 9.000000000E+00   |
| 5 2 5 6 501 0 -4.8694112043E+01 -9.4108577314E+01 -2.7841900146E+01 1.0963736715E+02 4.2000000000E+00 0.000000000E+00 9.000000000E+00  |
| -5 2 5 6 0 501 -1.5320979063E+01 2.7860390045E+00 4.8689724837E+00 1.6847590505E+01 4.2000000000E+00 0.000000000E+00 9.000000000E+00   |
| 14 1 11 0 0 0 3.3177407184E+01 -2.8263779006E+01 1.0769401227E+01 4.4895005891E+01 6.7434957617E-07 0.0000000000E+00 9.000000000E+00   |
| -14 1 12 0 0 0 3.6100303854E+01 9.7977768403E+01 -1.9154608551E+01 1.0615919210E+02 0.000000000E+00 0.00000000E+00 9.000000000E+00     |

Hadronization handled by Pythia (volunteers for Pythia variations?)

Simulation to be requested in ILD, FCC concepts, etc.

## **Threshold scan MC samples**



## Signal vs. background

We need a working definition of **signal** and **background** between experiment and theory

Single top



(note: single top is considered signal in WbWb calculations)

Also e+e-  $\rightarrow$  ZH, Z  $\rightarrow$  W+W-, H  $\rightarrow$  bb (or vice versa) is part of e+e-  $\rightarrow$  WbWb

600 Clear backgrounds: 6f without b-jets and 2f & 4f backgrounds 400 See: Martin Beneke, this meeting, for what's included in the prediction: երը 200 0 50 100 150 n mbb 9

ເມລາບຣາ.ນດວາເມານ.ຮວ

### Focus Topic Feb. 24

## **Experimental systematic uncertainties**

### Is the acceptance constant vs. sqrt(s) over the range of the threshold scan?

 Realistic selection requires one/two b-tags and isolated leptons, with "near-complete polar angle coverage" (https://arxiv.org/pdf/1307.8102.pdf + CLIC 380 https://arxiv.org/pdf/1807.02441.pdf)

### Is the b-tagging efficiency constant? Or can we calibrate it in-situ?

 Double-tag method, ATLAS (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/TOPQ-2023-21/), LEP (https://arxiv.org/abs/hep-ex/0509008), or ILD (https://arxiv.org/pdf/2306.11413.pdf)

No reconstruction?

- Required by measurement of A<sub>FB</sub>, but not needed (or desirable) for cross section





## Above the threshold: a broad precision programme

To be discussed in another meeting



### **Summary**

### Threshold scan signal MC samples are in development:

- WHIZARD six-fermion (with single top, Higgs, etc.) pure leading order in pole mass scheme

- Samples with more advanced model, including threshold enhancement, could be produced in the future

We need volunteers to analyze these

Plenty of related activities are still looking for personpower

### **Practical:**

Register on the mailing list if you haven't done so yet.

Step up the frequency of these meetings (and possibly move to another day)