
Iacopo Longarini, Priya Sundararajan (UCI)

Benjamin J. Rosser (U. Chicago)

Fast Monitoring of FPGA
algorithms using

SpyBuffers

FPGA Developers’ Forum (FDF) meeting 2024

11-13 Jun 2024 - CERN

Fast monitoring: introduction

2

• Fast Monitoring (FM) helps in performing real-time
debugging of a FPGA firmware, as well in providing useful
information when errors are detected and providing quality
control during operation

• The basic building block is the SpyBuffer (SB)

• SpyBuffers can be inserted at the input / output of several
firmware blocks in order to “Spy” (monitor) the data path

• Monitoring data be accessed thanks to an interface or a
service running on a SoC via the control path

• Data can be also injected in the firmware from a SpyBuffer,
enabling advanced debugging features, reproduction of
issues, etc

• SB are controlled by a specific FM control block that needs
to be implemented in the firmware

• SpyBuffer implementation in Verilog and software resources:
https://gitlab.cern.ch/spybuffer/

 FPGA

SoC

Alg

Alg

Alg
AlgInput Output

FM Control

Control Path
Data Path

https://gitlab.cern.ch/spybuffer/

SpyBuffer: in detail

3

• SpyBuffers are small firmware blocks sitting between two logic blocks, allowing to “Spy”
and “Inject” bitwords in the connection between them

• A copy of the all valid incoming data is stored to a circular buffer and passed to the second
firmware block without added latency

• Optionally, a FIFO can be added (clock domain transition, buffered interfaces)

Addr N
Addr N+1

Spy Write
Controller

Addr N-1

Freeze

Write
ptr

Memory
I/O

Playback

FIFO

Input
data

Playback
MUX

Spy
Memory

Output
data

Logic block
A

Logic block
B

SpyBuffer: Memory I/O & Freeze mode

Addr N
Addr N+1

Spy Write
Controller

Addr N-1

Freeze

Write
ptr

Memory
I/O

Playback

FIFO

Input
data

Playback
MUX

Spy
Memory

Output
data

4

Logic block
A

Logic block
B

SoC

• SB memory content can be read (e.g. from a script running on a SoC)
→This allows a simple way to get a “snapshot” of the data transmitted between A and B

• When the “Freeze” signal is asserted from the SoC:
• The transmission of data from A to B is not interrupted
• Monitoring is stopped: incoming words from A are not written to the SpyMemory

SoC

SpyBuffer: Playback mode

5

• With a SB in frozen state, it is possible to write test words (e.g. from simulation) to the circular buffer

• Then, by asserting the Playback signal:
• MUX will replace the incoming data from A with the content of the circular buffer

• Content of the SpyMemory will be sent to B

• Optionally the playback can be set to a “loop” mode, where the content of the memory is

continuously sent to B

Addr N
Addr N+1

Spy Write
Controller

Addr N-1

Freeze

Write
ptr

Memory
I/O

Playback

FIFO

Input
data

Playback
MUX

Spy
Memory

Output
data

Logic block
A

Logic block
B

SoC
SoC

D
at

a
Pa

th
C

on
tro

l P
at

h

SpyBuffer: firmware block interface & configuration

6

Verilog Parameter Description

DATA_WIDTH_A Width of write_data, read_data (data path)

DATA_WIDTH_B Width of spy_data (control path)

SPY_MEM_WIDTH_A Set internal address width of SpyMemory to store
incoming data

SPY_MEM_WIDTH_B Width of spy_addr. This is fixed and is determined
by the control interface

PASSTHROUGH 1: no FIFO, wclock and rclock are identical
0: FIFO inserted to handle wclock, rclock domain
crossing

• SpyBuffer will support up to three clock domains, in
case a dual-clock FIFO is added in the data path

• Control path connections include memory I/O and
controllers for Freeze and Playback modes

Freeze mode enabled

Waveforms - Freeze and readout

7

Data path is not
interrupted

Spy memory is not
written Readout from control path

• Waveforms obtained from cocotb simulation

https://www.cocotb.org/

Waveform - Playback

8

Playback
Once

Playback Write Playback
Loop

Playback Write

SB in Freeze mode

Data written to SB Memory Data read from SB Memory

Data read from SB Memory

FM block implementation and resource usage

9

• Technology independent design: SpyBuffers and FM control are
implemented using pure Verilog without the need of vendor-
specific IPs

• SB memories implemented in pure RTL → Synthesis tools can
optimize the implementation based on resource needs

• The FM control block defines the connections of the Control
Path and needs to be implemented by the user

• A flexible solution for many SpyBuffers defines global freeze
and playback signals, as well as a masking mechanism to
decide which of the SpyBuffers are affected

• Number of SpyBuffers, memory width and depth are
parameters that depend on the specific use-case and affect the
resource occupancy

Addr N
Addr N+1

Spy Write
Controller

Addr N-1

Freeze

Write
ptr

Memory
I/O

Playback

FIFO

Input
data

Playback
MUX

Spy
Memory

Output
data

Fast Monitoring Block

Control Path

FM CTRL
Spy Memory

Write Interface(s)

Data from FW
Blocks

Freeze,
Playback Status

Global Control
Signals

FM Data

Spy
Buffers

1
2
NSpy Memory Read

Interface(s)

Software module

10

• We tested the SpyBuffer firmware with a SoC accessing firmware registers via AXI C2C link

• A python module has been developed in order to simplify the interaction with the FM control block and SpyBuffers, based
on IPbus (ipbus.web.cern.ch), (Paper: 2015 JINST 10 C02019)

• IPbus is shipped with uHAL providing a C++/Python API for I/O operations on memory-mapped registers

• Registers for FM control and SpyBuffer memory access are mapped with a xml file

FM Control block
Initialize, global Freeze and Playback signals

Masks
controlling which SB is affected by the

global Playback and Freeze signals

SB Registers
Information on Spy Memory address, size, description

field can host additional information

https://ipbus.web.cern.ch/doc/user/html/index.html

Software platform - FastMonitoringClient

11

• FastMonitoringClient allows a simple interface to FM firmware and SpyBuffers, based on the uHAL
Python API

• High-level functions is defined to execute FM operations in an easy way
• Bring FM in a known state (e.g. unfreeze everything and unset playback)

• Freeze all SB or a list of SB (providing their id)

• Report the status of each SB

• SpyMemory I/O can be achieved via uHAL API 

 

• Masks are automatically managed by the software in a way that SpyBuffers are completely
transparent to the API user

• Everything is done with the idea of minimizing the number of write/read operation. The information of
SB status and masks is stored in the local memory (and updated accordingly when doing read/writes)

• SB information (id, address, etc) is extracted from the XML files

Fast Monitoring: use cases

12

• Debugging of the (partial) logic block on hardware

• If not all the firmware blocks are implemented, SB can be
used to “emulate” the missing ones

• Perform hardware / firmware test without a fully
implemented test stand
• Input data can be simulated offline and can be injected

thanks to a SpyBuffer located after the input interface (e.g.
when the detector providing input is not available)

• Inspecting data received from the input interface before it is
passed to the firmware logic

INT
1

INT
2

Hardware Platform

LogicSB1 SB2

Example: Hardware platform ready to be
tested, but missing input source

SB1 can be used in playback mode to
emulate data from interface 1

Fast Monitoring: use cases - 2

13

• Powerful tool for Data Quality
• SpyBuffer can be placed at the output of important blocks in the

firmware (e.g. where partial result are computed)

• Extract partial information from the firmware and populate

histograms to check the performance of the firmware algorithm
with great detail

• Error handling:
• Error states in the FPGA or in the firmware can be detected and

Fast Monitoring can force the freeze status on all SpyBuffers

• At this point some high-level analysis on the data collected from

the SB can be performed

• Data from SB can be saved for further inspection

Addr N
Addr N+1

Spy Write
Controller

Addr N-1

Freeze

Write
ptr

Memory
I/O

Playback

FIFO

Input
data

Playback
MUX

Spy
Memory

Output
data

Fast Monitoring Block

Control Path

FM CTRL
Spy Memory

Write Interface(s)

Data from FW
Blocks

Freeze,
Playback Status

Global Control
Signals

FM Data

Spy
Buffers

1
2
NSpy Memory Read

Interface(s)

Issue command to
Control Logic to resume

Monitoring

RESET

Spybuffers
 in FREEZE

state?

Error detection in
FPGA / FW Logic

Perform Readout /
Playback operation

Y

N

Transfer data to
ATLAS Global

Monitoring System
via ethernet link

Issue FREEZE
Command to all

SpyBuffers

User requests freeze

Error detection within
FPGA

Wait for
unfreeze
command

Inform frozen state
to SoC via Interrupt

Unfreeze all
SpyBuffers.

Monitoring resumes

FREEZE
Command?

Transfer data to
external monitoring

infrastructure

Perform readout /
recovery operation

SpyBuffer Logic block Logic blockSpyBuffer SpyBuffer

Hardware platform

EXT
Interface

EXT
Interface

Example: Dummy FW block

14

• “Dummy” firmware with two blocks and two SpyBuffers

• “Master” generates a sequence of words in a loop

• “Slave” acts as a pass-through

• During normal operation, SB_DUMMY1 receives the
words generated by the “Master” block

Addr N
Addr N+1

Spy Write
Controller

Addr N-1

Freeze

Write
ptr

Memory
I/O

Playback

FIFO

Input
data

Playback
MUX

Spy
Memory

Output
data

Fast Monitoring Block

Control Path

FM CTRL
Spy Memory

Write Interface(s)

Data from FW
Blocks

Freeze,
Playback Status

Global Control
Signals

FM Data

Spy
Buffers

1
2
NSpy Memory Read

Interface(s)

Issue command to
Control Logic to resume

Monitoring

RESET

Spybuffers
 in FREEZE

state?

Error detection in
FPGA / FW Logic

Perform Readout /
Playback operation

Y

N

Transfer data to
ATLAS Global

Monitoring System
via ethernet link

Issue FREEZE
Command to all

SpyBuffers

User requests freeze

Error detection within
FPGA

Wait for
unfreeze
command

Inform frozen state
to SoC via Interrupt

Unfreeze all
SpyBuffers.

Monitoring resumes

FREEZE
Command?

Transfer data to
external monitoring

infrastructure

Perform readout /
recovery operation

FM Dummy
Block

Master

FM Dummy
Block
Slave

SpyBuffer
SB_DUMMY1

SpyBuffer
SB_DUMMY0

FM Control Block

AXI Interconnect

Data path

SoC
FastMonitoringClient (software)

Control Path

Addr N
Addr N+1

Spy Write
Controller

Addr N-1

Freeze

Write
ptr

Memory
I/O

Playback

FIFO

Input
data

Playback
MUX

Spy
Memory

Output
data

Fast Monitoring Block

Control Path

FM CTRL
Spy Memory

Write Interface(s)

Data from FW
Blocks

Freeze,
Playback Status

Global Control
Signals

FM Data

Spy
Buffers

1
2
NSpy Memory Read

Interface(s)

Issue command to
Control Logic to resume

Monitoring

RESET

Spybuffers
 in FREEZE

state?

Error detection in
FPGA / FW Logic

Perform Readout /
Playback operation

Y

N

Transfer data to
ATLAS Global

Monitoring System
via ethernet link

Issue FREEZE
Command to all

SpyBuffers

User requests freeze

Error detection within
FPGA

Wait for
unfreeze
command

Inform frozen state
to SoC via Interrupt

Unfreeze all
SpyBuffers.

Monitoring resumes

FREEZE
Command?

Transfer data to
external monitoring

infrastructure

Perform readout /
recovery operation

FM Dummy
Block

Master

FM Dummy
Block
Slave

SpyBuffer
SB_DUMMY1

SpyBuffer
SB_DUMMY0

FM Control Block

AXI Interconnect

Data path

SoC
FastMonitoringClient (software)

Control Path

FM Dummy
Block

Master

FM Dummy
Block
Slave

SpyBuffer
SB_DUMMY1

SpyBuffer
SB_DUMMY0

Dummy block - Freeze and readout

15

Freeze mode is requested on
SB_DUMMY0

FM software automatically updates
register for freeze/playback mode

Memory of SB_DUMMY0 is frozen and
accessible

16

Freeze mode is requested on SB_DUMMY0
(and its memory is loaded with custom data)

SB_DUMMY0 is not yet set to playback,
“Master” data is still being passed to the

“Slave” block

SB_DUMMY1 is not in “Frozen” state,
data are constantly overwritten

Dummy block - Freeze and readout 2Addr N
Addr N+1

Spy Write
Controller

Addr N-1

Freeze

Write
ptr

Memory
I/O

Playback

FIFO

Input
data

Playback
MUX

Spy
Memory

Output
data

Fast Monitoring Block

Control Path

FM CTRL
Spy Memory

Write Interface(s)

Data from FW
Blocks

Freeze,
Playback Status

Global Control
Signals

FM Data

Spy
Buffers

1
2
NSpy Memory Read

Interface(s)

Issue command to
Control Logic to resume

Monitoring

RESET

Spybuffers
 in FREEZE

state?

Error detection in
FPGA / FW Logic

Perform Readout /
Playback operation

Y

N

Transfer data to
ATLAS Global

Monitoring System
via ethernet link

Issue FREEZE
Command to all

SpyBuffers

User requests freeze

Error detection within
FPGA

Wait for
unfreeze
command

Inform frozen state
to SoC via Interrupt

Unfreeze all
SpyBuffers.

Monitoring resumes

FREEZE
Command?

Transfer data to
external monitoring

infrastructure

Perform readout /
recovery operation

FM Dummy
Block

Master

FM Dummy
Block
Slave

SpyBuffer
SB_DUMMY1

SpyBuffer
SB_DUMMY0

FM Control Block

AXI Interconnect

Data path

SoC
FastMonitoringClient (software)

Control Path

FM Dummy
Block

Master

FM Dummy
Block
Slave

SpyBuffer
SB_DUMMY1

SpyBuffer
SB_DUMMY0

17

Before playback mode is set,
SB_DUMMY0 is loaded with test data

After playback the same content is
available in SB_DUMMY1

PLAYBACK_LOOP mode has also been tested

Dummy block - PlaybackAddr N
Addr N+1

Spy Write
Controller

Addr N-1

Freeze

Write
ptr

Memory
I/O

Playback

FIFO

Input
data

Playback
MUX

Spy
Memory

Output
data

Fast Monitoring Block

Control Path

FM CTRL
Spy Memory

Write Interface(s)

Data from FW
Blocks

Freeze,
Playback Status

Global Control
Signals

FM Data

Spy
Buffers

1
2
NSpy Memory Read

Interface(s)

Issue command to
Control Logic to resume

Monitoring

RESET

Spybuffers
 in FREEZE

state?

Error detection in
FPGA / FW Logic

Perform Readout /
Playback operation

Y

N

Transfer data to
ATLAS Global

Monitoring System
via ethernet link

Issue FREEZE
Command to all

SpyBuffers

User requests freeze

Error detection within
FPGA

Wait for
unfreeze
command

Inform frozen state
to SoC via Interrupt

Unfreeze all
SpyBuffers.

Monitoring resumes

FREEZE
Command?

Transfer data to
external monitoring

infrastructure

Perform readout /
recovery operation

FM Dummy
Block

Master

FM Dummy
Block
Slave

SpyBuffer
SB_DUMMY1

SpyBuffer
SB_DUMMY0

FM Control Block

AXI Interconnect

Data path

SoC
FastMonitoringClient (software)

Control Path

FM Dummy
Block

Master

FM Dummy
Block
Slave

SpyBuffer
SB_DUMMY1

SpyBuffer
SB_DUMMY0

Applications: ATLAS MDT-TP

18

• ATLAS implements Fast Monitoring in the MDT Trigger Processor
(for Phase-2 upgrade of the Muon Trigger system)

• During the development stage FM is used for firmware validation
and testing

• During HL-LHC operation this will be used to produce Data Quality
histograms and as a expert tool for debugging

JINST 18 (2023) 02, C02030

https://iopscience.iop.org/article/10.1088/1748-0221/18/02/C02030

Summary

19

• Fast Monitoring and SpyBuffers enable a flexible way to perform debugging of
complicated firmware algorithms

• Verilog implementation and software resources 
https://gitlab.cern.ch/spybuffer/spybuffer
• This git repository contains also a series of unit tests of the basic data flow,

spy memory readout, playback mode including an optional FIFO

• Tests are written in Python using cocotb and can be run with a supported

simulator (Questa, Cadence)

https://gitlab.cern.ch/spybuffer/spybuffer
https://www.cocotb.org/

Backup

Example resource usage

21

CLB 98

CLB Registers 126

CLB LUTs 98

Block RAM 4

• Resource usage on Xilinx VU13P for a single SpyBuffer

• Memory width 128 and depth 512 bits

• VU13P BRAM size is 36 kbit

• Max data width supported 32 bit

• 128/32 = 4 BRam

SpyBuffer Parameter Setting

DATA_WIDTH_A 128
DATA_WIDTH_B 32
SPY_MEM_WIDTH_A 9
SPY_MEM_WIDTH_B 11
PASSTHROUGH 0

