
Introduction HDLmake Cheby General Cores

CERN control group cores and tools

Tristan Gingold

CERN BE-CEM-EDL
tristan.gingold@cern.ch

1st FPGA Developers’ Forum
June 11, 2024



Introduction HDLmake Cheby General Cores

Presentation Overview

1 Introduction

2 HDLmake

3 Cheby

4 General Cores



Introduction HDLmake Cheby General Cores

Foreword

The slides could be used as a quick introduction to the
HDLmake and Cheby tools.

To be understood without the one-man show presentation,
the text is mostly written with sentences

So contrary to guidelines or tutorials, the slides are not
drawn to support the presentation



Introduction HDLmake Cheby General Cores

Who is BE-CEM-EDL ?

Part of the control group(s)
• Electronic and low-level software for control
• Previously BE-CO-HT

Main projects:
• White-Rabbit (sub-ns synchronization over Ethernet)
• DI-OT (crate and kit for radiation-exposed and

radiation-free areas)
• ohwr.org Open-Hardware Repository
• CERN OHL licenses

Many less well-known projects (SVEC, SPEC, FMCs, VME
core...)

ohwr.org


Introduction HDLmake Cheby General Cores

Particularities of the WR project

• Long project: over 15 years of existence
• Multi-target: Xilinx (ISE and Vivado), Altera

• Cannot use methodology from a vendor
• HDL + Software
• IP but also full design (switch)
• Many asynchronous blocks



Introduction HDLmake Cheby General Cores

HDLmake



Introduction HDLmake Cheby General Cores

Describing sources

All HDL tools (simulator, synthesizers) have a notion of
project to define:

• list of source files (HDL, constraints, block diagram, ...)
• options, flags, target...
• actions to perform

They all know TCL (so 90s)

But syntax/commands, options, and actions differ



Introduction HDLmake Cheby General Cores

Describing sources

Describing the source files is not that simple:
• Probably you know your own files
• But you’d like to organize freely (dirs and subdirs)
• You may know your own reusable IPs
• Maybe less external IPs

The source files of an IP should be declared in the IP

The source files must be declared once (and not once per
tool)



Introduction HDLmake Cheby General Cores

HDLmake Manifest.py

Manifest.py
files = [

’board_map.vhd’, ’host_map.vhd’,
]

It is a python file, ideally using only declarative syntax. Some
variables like files are then used by HDLmake



Introduction HDLmake Cheby General Cores

HDLmake Manifest.py

Python statements may still be useful:

Manifest.py
if (syn_device[0:4]=="xc6s"): # Spartan6

files.extend(["spartan6/wr_gtp_phy.vhd"])
elif (syn_device[0:4]=="xc6v"): # Virtex6

files.extend(["virtex6/wr_gtx_phy.vhd"])
]



Introduction HDLmake Cheby General Cores

HDLmake modularity

In one Manifest.py, it is possible to refer to another one:

Manifest.py
modules = {
’local’: [’../top’, ’../my-lib’],

}

HDLmake will consider all the source files



Introduction HDLmake Cheby General Cores

HDLmake top-level

Action and options are in the top-level Manifest.py:

Manifest.py
action = "synthesis"

syn_device = "xczu4cg"
syn_package = "-sfvc784"
syn_top = "my_top"
syn_project = "my_project"
syn_tool = "vivado"

files = [ ’constraints.xdc’ ]

modules = { ’local’: [’../top’], }



Introduction HDLmake Cheby General Cores

HDLmake usage

Shell
$ hdlmake

HDLmake reads the Manifest.py and generate a Makefile

To do generate a bit-stream or to analyze the files:

Shell
$ make

To simply create the project file (ready to use by FPGA tool):

Shell
$ make project



Introduction HDLmake Cheby General Cores

IP cores with HDLmake

Can specify sources from an external repository:

Manifest.py
modules = {
’local’: [’../../top/vme’],
"git" : [
"https://ohwr.org/project/general-cores.git" ]

}

Use $ hdlmake fetch to clone or update the repository

Will be cloned in the fechto directory, which is a variable
defined in the top Manifest.py



Introduction HDLmake Cheby General Cores

IP cores with HDLmake (our trick)

We use git submodules instead and manage the IP cores
directly using git command

For HDLmake, the modules will always be ready to use

Additional trick: you can override the value of fechto:

Manifest.py
$ hdlmake --fetchto=../../..

If you have many projects, you can easily share the IPs, no
need to clone them several times



Introduction HDLmake Cheby General Cores

HDLmake - conclusion

• It gathers source filenames and create project files
• Can also be used with your own TCL script just to gather

the source files
• Automatically discard unused sources (useful with

external IPs)
• Do not enforce a particular methodology
• Highly flexible (eg: generate sha1 file to embed)

Similar tools: FuseSoC, Hog



Introduction HDLmake Cheby General Cores

Cheby



Introduction HDLmake Cheby General Cores

Memory map

A very common problem:
• Many designs have a (or several) register maps
• It is tedious to write
• Needs a software view (usually #define or a struct)
• Keep HDL and software views in synch

Several tools have been written, including at CERN:
Cheburashka, wbgen

When you have several tools for the same purpose, usually
a new is created to merge the existing ones...



Introduction HDLmake Cheby General Cores

Cheby - header

example.cheby
memory-map:
bus: wb-32-be
name: example
description: An example of a cheby memory map

...

• The input file is YAML
• The structure of the file is regular (name, description,

children)
• The header specifies the slave bus (WB, AXI4-Lite,

Avalon...)
• ... width and endianness



Introduction HDLmake Cheby General Cores

Cheby - body

example.cheby
...

children:
- reg:

name: regA
description: The first register
width: 32
access: rw

• the map is composed of registers (other elements exist)
• the access mode is valid for the whole register



Introduction HDLmake Cheby General Cores

Cheby - fields

A register can have fields:

example.cheby
...

children:
- field:

name: field0
description: 1-bit field
range: 1

• the range is explicit and define the width of the field
• fields cannot overlap



Introduction HDLmake Cheby General Cores

Cheby - multi bit fields

example.cheby
- reg:

name: div
comment: clock divider for the spi
width: 32
access: rw
children:
- field:

name: val
range: 7-0



Introduction HDLmake Cheby General Cores

Cheby - define behaviour

Usually a reg behaves like a register if the access mode is wr
or like an input if the access mode is ro.

It is possible to refine the behaviour:

example.cheby
- reg:

name: ident
comment: magic number to identify the core
width: 32
access: ro
preset: 0x52544430
x-hdl:
type: const



Introduction HDLmake Cheby General Cores

Cheby - extensions

Tags whose name start with x- are extensions
• they have no influence on the layout
• they are directive for a particular generator
• here x-hdl is for the HDL generate
• they can be ignored by other generators

This system makes the input file flexible



Introduction HDLmake Cheby General Cores

Cheby - attributes for reg/field

type: autoclear will automatically clear the field, so a
pulse is generated (usually the range is a single bit)

example.cheby
- field:

name: start
comment: Start transmission
range: 0
x-hdl:
type: autoclear

type: or-clr allows to capture pulse. The field (usually
one bit) is or-ed with the input and is cleared by writing a 1



Introduction HDLmake Cheby General Cores

Cheby - full control

The attribute type: wire removes the flip-flop; you
usually need to also add write-strobe to know when the
register is addressed. You can also use read-strobe

example.cheby
- reg:

name: dout
comment: Data to send (bit 31 first)
access: wo
width: 32
x-hdl:
type: wire
write-strobe: True

With this mechanism you have full control; you can define
different behaviour for reads and for writes



Introduction HDLmake Cheby General Cores

Cheby - generation

From the memory map definition (single source of truth),
the tool can generate:

• HDL: vhdl, verilog or SystemVerilog
• HDL constant files: addresses and offsets of the

registers, useful when writing testbenches
• constant file in python or TCL: likewise
• C header file: either #define or struct that represent

the memory map (for drivers)
• documentation: html, md, reset
• simple text output: useful for debugging or reviewing



Introduction HDLmake Cheby General Cores

Cheby - Extra elements

In addition to registers, a memory map can have:
• memory: either external RAMs or instantiated ones
• repetition: for multiple registers
• submap: re-use of an existing cheby memory map (or

external bus)
• block: just a way to group elements



Introduction HDLmake Cheby General Cores

Cheby - submap

submap makes Cheby modular: you can integrate existing IP
memory maps into your core.
Cheby will automatically create the bus conversions if
needed.
example.cheby
children:
- submap:

name: host
address: 0x000000
filename: host_map.cheby



Introduction HDLmake Cheby General Cores

General Cores



Introduction HDLmake Cheby General Cores

General Cores

Gather various small cores and infrastructure
• Wishbone (WB) and AXI4 records
• bus conversion (WB/AXI4)
• WB infrastructure (crossbar, adapter, clock domain)
• I2C, SPI, UART, OneWire
• synchronizer
• reset generator
• memories
• FIFO
• 8b10 decoder
• ECC and voters
• Cordic, FIR



Introduction HDLmake Cheby General Cores

General Cores

Why a single repository with many cores ?
• too small to deserve a separate repository
• much easier to add a new core (no need to create a new

setup)
• easier to browse them
• easier to use them (add only one link)
• each core is stable
• HDLmake only adds referenced file in your project
• common style (suffix, names, ...)



Introduction HDLmake Cheby General Cores

RAM and FIFO from General Cores

• generic memories (width + size)
• implementation can be vendor specific (but hidden)
• dual port memories
• dual clock memories
• initialized memories
• likewise for FIFO (sync, async)



Introduction HDLmake Cheby General Cores

Synchronizers

Handle metastability for an asynchronous input
• two flip-flops in a raw
• with appropriate directives
• and script to generate constraints

Block to safely transfer a word across two clock domains

Reset generation for multiple clocks



Introduction HDLmake Cheby General Cores

Wishbone

We mainly use Wishbone as a SoC bus
• The specification is free, no licence
• Rather simple

Connecting buses wire by wire is tedious
• SystemVerilog has interfaces
• Records can be used in VHDL

Multiple cores for wishbone infrastructure
• crossbar
• adapters (protocol, clocks)
• pipeline



Introduction HDLmake Cheby General Cores

SPI, I2C...

• These cores come from OpenCore
• A wrapper has been added (for style)
• Some with modifications
• Linux drivers
• Testbench



The End
Questions? Comments?


	Introduction
	HDLmake
	Cheby
	General Cores

