
Towards a CERN-wide common cores library

Alberto Perro
FPGA Developers’ Forum 2024 - CERN

Overview

Current situation

Motivation

Library Structure and Philosophy

Library Content

Testbenches

Formal Verification

Coding Guidelines

Case studies

Alberto Perro FPGA Developers’ Forum 2024 - CERN

2

Current situation in LHCb: Gateware

LHCb uses a common FPGA hardware platform (PCIe40)
shared across all sub-detectors:

- A common framework is shared between
sub-detectors to reduce development overhead

- Sub-detectors have to develop their own custom
gateware on top to process the frontend data formats

This results in more than 30 different gateware variants to
test and maintain.

As most FPGA designs, gateware is not made to be
portable between devices of the same vendor, let alone
different vendors.

Alberto Perro FPGA Developers’ Forum 2024 - CERN

3

Current situation in LHCb: Validation

Test coverage is limited and testbenches can
cover only a small amount of cases.

Each test uses custom Tcl scripting and it can
only run on one simulator (and sometimes a
specific version).

Simulation also takes a long time: almost 3
hours for a single gateware flavor.

Covering all flavors requires lots of instances
in parallel, each requiring a license.

Alberto Perro FPGA Developers’ Forum 2024 - CERN

4

Motivation

We started an effort to use modern validation
and verification methodologies in our gateware
development. This showed us:

● We need better and more exhaustive
integrated testing

● Most modules use proprietary code, which
limits our selections of test tools and
portability to new platforms

● A bunch of entities have similar functionality,
but are written by hand by different
developers, hiding corner case bugs

Alberto Perro FPGA Developers’ Forum 2024 - CERN

5

Reinventing the Square Wheel

DAQ Upgrade in LHCb

Higher DAQ throughput requires LHCb to
upgrade its hardware platform.

The PCIe40 successor - PCIe400 - will require a
major porting effort of the current gateware,
even though its FPGA is made by the same
vendor (Arria 10 to Agilex 7).

We decided that a common core library - colibri
- was necessary to both speed up development,
improve code reuse, and step away from vendor
lock-in.

Alberto Perro FPGA Developers’ Forum 2024 - CERN

6

Library Structure and Philosophy

colibri has these foundation principles in mind:

● The library needs to be open source (GNU
GPLv3) to build a strong community around it

● It has to be completely vendor-independent
to ensure portability and avoid vendor lock-in

● All components must be validated and
verified, to ensure their correct functionality

Alberto Perro FPGA Developers’ Forum 2024 - CERN

7

validation
and

verification

open source

vendor
independent

Library Structure and Philosophy

These principles, translated into practice, become:

● The whole library is written in a subset of VHDL-2008,
which is compatible with all toolchains tested so far.

● The choice of a single language enables the use of open
source simulators such as GHDL and NVC.

● Open source simulators and modern testing
frameworks (UVVM, OSVVM, VUnit) can run in CI/CD
without requiring licensing.

● Tcl scripting is discouraged, use of python-based
scripting frameworks is highly recommended.

Alberto Perro FPGA Developers’ Forum 2024 - CERN

8

Toolchains tested:
● AMD Vivado
● Intel Quartus
● Lattice Radiant
● Microsemi Libero
● Efinix Efinity
● Gowin EDA
● Aldec Riviera Pro
● Mentor Modelsim
● NVC
● GHDL

Library Content

The library is a collection of the most common cores we encountered
during design and simulation of gateware. Each core has been written
from scratch, new cores are continually added.

Here are the main categories present:

● Common Functions

● Pipes entities

● File Operations

● Memory Entities (FIFOs, RAMs)

● Utilities for Communications (scrambler, PRBS, …)

● Input/Output (I2C, UART, …)

● Adapters for interfaces (AXI, Avalon, …)

● Miscellaneous entities yet to classify

Alberto Perro FPGA Developers’ Forum 2024 - CERN

9

├── pipes
│ ├── arbiter.vhdl
├── common
│ ├── common.vhdl
│ ├── counter.vhdl
│ ├── encoders.vhdl
│ ├── pipeline_buffer.vhdl
│ ├── skid_buffer.vhdl
│ ├── synchro_reset.vhdl
│ ├── synchro.vhdl
│ ├── types.vhdl
│ └── utils.vhdl
├── comms
│ ├── descrambler.vhdl
│ ├── poly_pkg.vhdl
│ └── scrambler.vhdl
├── fileio
│ ├── binaryio.vhdl
├── interfaces
│ ├── memory_mapped
│ │ └── wb_ram.vhdl
│ └── stream
│ ├── AvST_to_AXIS.vhdl
│ └── AXIS_to_AvST.vhdl
├── io
│ ├── i2c
│ │ └── i2c_controller.vhdl
│ └── uart
│ ├── uart_rx.vhdl
│ ├── uart_tx.vhdl
│ └── uart.vhdl
├── memory
│ ├── cc_fifo.vhdl
│ ├── fifo.vhdl
│ ├── mem_pkg.vhdl
│ ├── mixedw_cc_fifo.vhdl
│ ├── mixedw_fifo.vhdl
│ ├── ram.vhdl
│ ├── simple_dpram.vhdl
│ └── true_dpram.vhdl
└── misc

├── be_add_lead.vhdl
├── be_add_trail.vhdl
├── be_remove_lead.vhdl
├── be_remove_trail.vhdl
├── heartbeat.vhdl
├── powerup_reset.vhdl
└── stream_to_wbm.vhdl

Validation and Verification: Testbenches

Self-checking testbenches are present for each
component available in colibri.

Unit tests and coverage tests are organized under
the VUnit testing framework, which enhances
portability between simulators.

UVVM and OSVVM verification frameworks are
also used to improve test functionality (random
stimuli, scoreboards, BFMs).

All testbenches are run in CI using the open source
NVC simulator, which offers great simulation speed
and stability.

Alberto Perro FPGA Developers’ Forum 2024 - CERN

10

Validation and Verification: Formal

Formal Verification (FV) methodologies are a set of
techniques use static analysis based on mathematical
transformations to determine the correctness of
gateware behaviour.

FV can guarantee the absence of bugs, since it can
prove mathematically that the model satisfies the
requirements.

Library components which functionality can be
formally proved are equipped with FV tests.

The full workflow in CI uses GHDL as VHDL
interpreter, Yosys as a synthesis engine and
SymbiYosys as the FV front-end.

Alberto Perro FPGA Developers’ Forum 2024 - CERN

11

Continuous Integration

Continuous Integration is a crucial tool to enforce and
guarantee the functionality of the library.

Containers on GitLab runners are used for running
self-checking testbenches, style-checking, and formal
verification.

Both testbenches and style checking are integrated
to the automated pipeline report using the JUnit
XML reporting framework.

The reports help significantly the developers in
spotting bugs without going through all test artifacts
and logs.

Alberto Perro FPGA Developers’ Forum 2024 - CERN

12

Coding Guidelines

Coding style guidelines are included in the
project. These guidelines help to maintain
uniformity throughout the codebase.

Guidelines are enforced in CI by using the
open source linter and style checker VSG.

Well commented code, markdown
documentation, and diagrams are also
crucial for the wide adoption of colibri.

Alberto Perro FPGA Developers’ Forum 2024 - CERN

13

Case Studies
Using colibri on the field

Case 1: Aurora Protocol

Aurora is an open protocol supported by AMD
Xilinx devices. It will be used by the FastRICH
Frontend ASIC over an lpGBT link to encode and
transmit data.

The decoding of the protocol, which will run on
the backend FPGA, has been developed entirely
using colibri.

The FPGA gateware has been tested and ported
with success on both AMD Xilinx boards and
Altera boards. The porting effort only required
setting the right timing and physical constraints.

Alberto Perro FPGA Developers’ Forum 2024 - CERN

15

Case 2: 10G UDP/IP transmitter

As part of the EP R&D WP9.3 and ECFA DRD7.5,
Ethernet is being evaluated as a frontend data
link.

A proof-of-concept for a media converter between
lpGBT and Ethernet was developed.

The full UDP/IP tx pipeline has been designed
using colibri components.

The code was ported and tested successfully on
AMD Xilinx and Microsemi FPGAs.

Alberto Perro FPGA Developers’ Forum 2024 - CERN

16

Credits to Valentin Stumpert of EP-ESE

Case 3: Verification of LHCb Gateware

Formal verification was applied to the
LHCb gateware in different situations to
find corner cases that showed up during
commissioning.

Components from colibri were used to
replace proprietary components that
are not compatible with the FV
toolchains.

This also allowed the use of open source
simulators to extend the test coverage.

Alberto Perro FPGA Developers’ Forum 2024 - CERN

17

A corner case bug in the LHCb gateware where there is a mismatch between the
number of words in the packet and the packet size. FV was used to find it.

Vendor Agnosticism
The portability of the library between vendors was tested
with a simple gateware consisting of:

● External sensor serial readout

● Mixed width FIFOs

● FIFO data buffers

● UART to read raw data

● UART for control and status registers

The gateware design aims to simulate a very simple

frontend readout design.

The gateware was ported with success to Lattice, Efinix,

and Gowin.

Alberto Perro FPGA Developers’ Forum 2024 - CERN

18

Efinix
Trion T8F81C2

Lattice
iCE40UP5k

Gowin
GW1N-1

Future Prospects

The work presented wants to be a step towards a
CERN-wide common core library.

The structure and the philosophy behind the project
allows easy adoption, portability, and integration in
current and future gateware designs.

The LHCb developers will widely use colibri to develop
the gatewares for the next upgrade.

The library is also being included in the EP R&D working
package 9.3.1: Firmware Portability Framework.

We hope that more experiments and groups will join us
and adopt colibri for their developments.

Alberto Perro FPGA Developers’ Forum 2024 - CERN

19

Thanks for the attention!
The library can be found at:

https://gitlab.cern.ch/colibri/colibri

Special thanks to:
LHCb Collaboration - Online Project

EP department - R&D WP9.3

https://gitlab.cern.ch/colibri/colibri

References: Tools

- https://vunit.github.io/

- https://www.uvvm.org/

- https://osvvm.org/

- https://yosyshq.readthedocs.io/

- https://github.com/ghdl/ghdl

- https://github.com/nickg/nvc

- https://github.com/jeremiah-c-leary/vhdl-style-guide

Alberto Perro FPGA Developers’ Forum 2024 - CERN

21

https://vunit.github.io/
https://www.uvvm.org/
https://osvvm.org/
https://yosyshq.readthedocs.io/
https://github.com/ghdl/ghdl
https://github.com/nickg/nvc
https://github.com/jeremiah-c-leary/vhdl-style-guide

Backup

VUnit Configuration Script

VUnit is a Python Package. The main
configuration script is a python script
where the source files and libraries
are declared.

Custom tests, simulator-specific
options, and test configuration is also
done in this script.

Alberto Perro FPGA Developers’ Forum 2024 - CERN

23

from vunit import VUnit

vu = VUnit.from_argv()
vu.add_vhdl_builtins()

work_lib = vu.add_library(‘work_lib’)
work_lib.add_source_files("<path_to_sources>/*.vhd")

vu.main()

VUnit Testbenches

VUnit testbenches are defined in the
HDL. The testbenches require specific
libraries and generics to interface with
VUnit.

VUnit automatically recognizes tests
when scanning the source files.

Alberto Perro FPGA Developers’ Forum 2024 - CERN

24

library vunit_lib;
context vunit_lib.vunit_context;

entity test_tb is
 generic (
 runner_cfg : string
);
end entity test_tb;

architecture sim of test_tb is
begin

 seq: process
 test_runner_setup(runner, runner_cfg);
 if run("test_case_1") then
 end if;
 test_runner_cleanup(runner);
 end process;
end architecture;

Formal Verification tools for VHDL

A combination of open source tools is necessary to perform FV on VHDL code.

A full workflow uses GHDL as VHDL interpreter, Yosys as a synthesis engine
and SymbiYosys as the FV front-end.

While already capable, the tools are still in development and can require a bit
of tinkering to get the most out of them.

Using Docker is suggested: docker pull hdlc/formal

Alberto Perro FPGA Developers’ Forum 2024 - CERN

25

Avalon ST specification

Avalon ST interfaces have 5 signals:

- StartOfPacket (source->sink)
- EndOfPacket (source->sink)
- Data (source->sink)
- Valid (source->sink)
- Ready (sink->source)

A packet transmission is defined by a SOP asserted for 1 cycle
and it’s closed by an EOP asserted for 1 cycle.

If the packet is only one word long, SOP and EOP are asserted
at the same time.

The signals SOP, EOP, Data are valid only if valid is asserted.
They must be ignored otherwise.

The ready signal is driven low by the DUT when it is not ready
to process incoming data and should block the source, without
corrupting the input.

Alberto Perro FPGA Developers’ Forum 2024 - CERN

26

PSL:
Avalon ST
VHDL processes can be put
inside PSL files to model
external signals used for
assumptions and
assertions.

Alberto Perro FPGA Developers’ Forum 2024 - CERN

27

vunit test_name(entity_name(rtl))

{

default clock is rising_edge(clk);

assume {rst};

type T_PKT is (IDLE, SINGLE, MULTI);

signal s_snk_pkt : T_PKT := IDLE;

.

.

.

.

}

Toolchain supports only
clocked operation, the clock
has to be declared.

Additional types and signal
can be added to expand and
simplify the verification.

First assumption:
Assume the DUT is reset.

This means that rst is being
triggered during the first cycle.

PSL:
Avalon ST
PSL statements can be
specified in the VHDL
directly.

For an easier integration,
it’s preferred to declare
them in a separate .psl file,
specifying a vunit test,
targeting a specific entity.

Alberto Perro FPGA Developers’ Forum 2024 - CERN

28

p_snk_pkt : process (clk)

begin

 if rising_edge(clk) then

 if rst = '1' then

 s_snk_pkt <= IDLE;

 else

 if (snk_valid = '1' and snk_ready = '1') then

 if(snk_sop = '1' and snk_eop = '0') then

 s_snk_pkt <= MULTI;

 elsif(snk_sop = '0' and snk_eop = '1') then

 s_snk_pkt <= IDLE;

 elsif(snk_sop = '1' and snk_eop = '1') then

 s_snk_pkt <= SINGLE;

 end if;

 end if;

 end if;

 end if;

end process;

PSL:
Avalon ST
Assumptions model the
floating signals (inputs).
Contradictory assumptions
are detected by the solver
(PRE-UNSAT).

Assertions should be
named. The solver will try
to prove them wrong.

Alberto Perro FPGA Developers’ Forum 2024 - CERN

29

-- packet format assumptions for input driver
-- if the packet is a multi word packet, no sop during the packet
assume always (s_snk_pkt = MULTI) -> (not snk_sop);
-- no valid or ready if there's no sop and it's not a multi word packet
assume always (not snk_sop and s_snk_pkt /= MULTI) -> (not snk_valid and
not snk_ready);

-- TESTS on output packets
-- if the out is IDLE and src is ready and valid, a sop must be present
t_valid_out_sop : assert always (not rst and s_src_pkt = IDLE and
src_ready and src_valid) -> (src_sop);
-- if the out is a MULTI word and src is ready and valid, a sop must NOT
be present
t_valid_out_multi : assert always (not rst and s_src_pkt = MULTI and
src_ready and src_valid) -> (not src_sop);
-- if there is sop eop ready and valid, the out must be a single packet
(on the next clock)
t_valid_out_single : assert always (not rst and src_ready and src_valid
and src_sop and src_eop) |=> (s_src_pkt = SINGLE);

SBY

The .sby file configures
SymbiYosys to run the FV.

Run the FV by:

sby --yosys "yosys -m ghdl"
\ -f /path/to/file.sby

Alberto Perro FPGA Developers’ Forum 2024 - CERN

30

[tasks]

bmc

[options]

bmc: mode bmc

bmc: expect pass

bmc: append 1

bmc: depth 10

[engines]

smtbmc

[script]

ghdl --std=08 VHDL_FILES PSL_FILE -e entity_name

prep -top entity_name

[files]

PSL_FILES

VHDL_FILES_IN_COLUMN

BMC stands for Bounded
Model Checking

Number to cycles to append
to the counter-example

Number to cycles to run the
solver for

Interpreting the results

If the job is successful, the tool will report
that the test has passed.

If the tool has found any counterexample
to the specifications we gave, it will:

● create a waveform file with all the
cycles that led to the failure.

● create a SystemVerilog testbench to
with the stimuli used to reach the
failure state.

Alberto Perro FPGA Developers’ Forum 2024 - CERN

31

