
 Fine-grained hierarchical 
placement constraining for 
timing closure (and more)

Álvaro Navarro-Tobar



Presentation and outline

Ciemat has been part of CMS since its construction (myself for “just” 15 years) 
doing, among many other things, FPGA stuff

● Drift Tubes construction: readout frontend and backend (Altera, Spartan-IIe)
● Phase1 upgrade: readout backend (Spartan 6, Virtex 7)
● Phase2 upgrade: detector frontend (Polarfire) and trigger backend (Virtex 

UltraScale+)

Outline

● Python-generated hierarchical placement constraints
○ Introduction and motivation (3-6)
○ Goals (7-8)
○ Description (9-12)
○ Results (13)

○ [VHDL record serializer/deserializer methodology (14)]
○ [clock_strobes entity to do help with data handover across related clocks (15)]

2
Álvaro Navarro Tobar - 12/6/2024



CMS Muon Trigger Primitive generation Phase-2 upgrade

•Analytical Method (proposed by 
CIEMAT) has been developed to 
implement reconstruction of the 
barrel (DT+RPC) trigger primitives in 
HL-LHC

•Drift Tube chambers hits received 
asynchronously and need to be 
combined on each Superlayer to form 
a track.

•Laterality uncertainty and time drift 
uncertainty (400 ns)

•Exploits maximum achievable 
resolution, bringing the hw system 
closer to offline performance 
capabilities. 
[10.1016/j.nima.2023.168103]

•In collaboration with UAM and Univ. 
Oviedo. Uni Ovi also participates in 
OMTF

3
Álvaro Navarro Tobar - 12/6/2024



Need for speed

Throughput, throughput, throughput: our algorithm suffers from combinatorial 
explosion. Squeezing the last %'s of efficiency requires increasing substantially 
the number of hit combinations that can be analyzed in a fixed latency

Due to system constraints (experiment, hardware, firmware framework), the most 
"natural" frequencies to use are 240, 360 and 480 MHz (6x, 9x and 12x LHCclk)

480 MHz seemed like a good idea, challenging but achievable. Target 2.079 ns

4
Álvaro Navarro Tobar - 12/6/2024



Not so fast

The DT AM algorithm can be split in ~15 relatively small sub-units (entities)

My bottom-up approach

1. Design each entity so that it is able to run very fast, close timing with a big 
margin (1.7-1.8 ns) → challenging, 100 ps at this scale is a big achievement
● out of context runs
● 1.7 ns = 588 MHz, global clock buffers and BRAM and DSPs 

performance in the range 650-750 MHz
2. Integrate. With proper piping between modules, the margin on first step 

should be enough to absorb the difficulty to put the whole design together
3. Fail: I ended up thanking closure at 360 MHz

5
Álvaro Navarro Tobar - 12/6/2024



The Usual Suspects

Problems identified in my design and workflow

● SLR boundary crossings
● Not enough piping between modules (e.g. some modules 

output directly from unregistered output RAM)
● High fanout control signals not sufficiently piped (reset, BX, 

enables…). Sometimes not so easy to detect, as the 
violation may not appear in the high-fanout signal but in the 
entity’s inner RTL which is being pulled too tightly.

● Vivado doesn't make a good enough job in placing big 
design (500k LUTs/FFs) with many paths close to critical 
timing in big area; complexity is too high. Rolling dice a 
million times almost guarantees you get a bunch of 
violations. They don't appear consistently in the same paths, 
or the same instances of the same entities.

Plac
em

en
t h

elp
s 

ide
nt

ify
ing

/fix
ing

Plac
em

en
t m

ak
es

 

a b
ig 

dif
fer

en
ce

6
Álvaro Navarro Tobar - 12/6/2024



Approaching the placement problem

Device AMD VU13P (4 SLRs) ⇒
try 2 chambers/SLR (2nd-level 
depth) → Fail!! → need finer 
grained placement, but…

● How deep will I end up 
needing? All the way 
down?

● How would my constraints 
file look like, iterating over 
repeated blocks with 
6-levels-deep inner 
structure?

● How maintainable will it be 
when the algorithm 
evolves?

● How easy is it to quickly 
draft and test pblocks for 
small instances?

● Infrastructure 
(placed by 
framework)

● 2x Sectors

● 16x input 
decoders

● 1x 16:12 mux
● 4x chambers

● 3x hit 
preprocessor

● 1x phiview
● 1x global 

coordinates
● 1x technical 

trigger
● 1x output 

formatter

● 2x superlayers
● 1x matcher

● 1x snapshotgen
● 1x pathfinder
● 1x laterality
● 3x linear 

regression
● 1x filter

● 1x pairings
● 3x queues
● 1x linear 

regression
● 1x filter

Our design (today, but will evolve):
~250 individual entity instances, 
distributed in 6-depth hierarchy

7
Álvaro Navarro Tobar - 12/6/2024



I wish I had a placement helper framework which…
● Is user-friendly, backend does the heavy lifting

● Is aware of resources and utilization, automatically resize pblocks if needed, and 
reports on utilization with configurable safety margins

● Allows for top-down workflow: start with coarse placement, when it doesn’t work, 
just subdivide a pblock to have inner structure, and result is offset to be placed 
where the original pblock was instantiated

● Allows for bottom-up workflow: when need arises to repeatedly test smaller, 
critical portions of design, it can generate constraints only for it, then run OOC, then 
progressively integrate on bigger portions of the design

● Reasonably easy to evolve with the design, maintainable, not a pain to remake 
everything when one of the modules in the middle of the algorithm is redesigned 
and grows or shrinks

✅
❌
❌

8

Álvaro Navarro Tobar - 12/6/2024



Backend: X-Y coordinates and FPGA definition

Horizontally, each character in the 
COLUMNS string represents a fabric 
column

● Slices, RAM, DSP
● Others are still missing (PCIE, 

CFGIO…), they affect routability
● Non uniform distribution, pblocks 

that use RAM or DSPs cannot 
really be offset horizontally

● Slice-only pblock with care

Vertically, divided in “vertical atoms”, 
the minimum vertical step without 
fractional number of RAM and/or DSP

● Then stacked up to form SLR, 
then the full FPGA

● Turns out to be too coarse, favors 
generation of high-aspect-ratio, 
vertical pblocks, which is bad for 
routing.

!
Work in 
progress

9
Álvaro Navarro Tobar - 12/6/2024



User interface: pblocks and boxes
(bonus: top-down workflow example)

pblock

● Define boundaries, if one edge left 
undefined, auto-size

● Options: IS_SOFT, CONTAIN_ROUTING, 
other features..

● Contents, each item:
○ Defines resource utilization
○ Defines paths (if path field present, 

otherwise just add the resources)

box

● Organizer, contains a list of “things” 
(pblocks or other boxes)

● 3 alterations recursively applied down the 
hierarchy for each thing:

○ Prefix the name of inner pblocks
○ Prefix each path in all inner pblocks
○ Offset the fabric placement of each inner 

pblock

!
Work in 
progress

10
Álvaro Navarro Tobar - 12/6/2024



pblock output on console and tcl

● Shows columns for current 
pblock and neighboring 
towards left and right

● Shows slice shape and 
boundaries

● Shows used vs available 
resources

○ Warns when over-utilized or 
above safety margins

● Outputs pblocks to constraints 
file

!
Work in 
progress

11
Álvaro Navarro Tobar - 12/6/2024



Bottom-up: single entity. w/o contain routing
● Single entity plus 

input/output registers of 
wrapper

● Closes timing, seems ok
● But uses routing resources 

outside of pblock
● Will not work due to 

congestion in final design

!
W

or
k 

in
 

pr
og

re
ss

12
Álvaro Navarro Tobar - 12/6/2024



Attained results

Latest draft placement 
algorithm → 208 pblocks

SLR Xings + 8 chambers 
algorithm → 24 pblocks

Only infrastructure placed 
algorithm → 0 pblocks

(*) RTL for SLR crossings and piping optimized thanks to fine-grained placement, then removed placement

(*) (*)

!
Work in 
progress

13
Álvaro Navarro Tobar - 12/6/2024



[VHDL record serializer/deserializer methodology]
You've got your data nicely 
structured in a vhdl record and want 
to convert a to a std_logic_vector 
and back again (e.g. for a fifo or tx 
over serial link). You &-concatenate. 
You slice the output. Your change 
the record. You take a deep breath. 
You feel miserable. You bug.

14
Álvaro Navarro Tobar - 12/6/2024



[Clock phase strobes]

Working family of related clocks (eg. LHC clock x1, x9, x12)

Sometimes code running in fast clock needs to know phase relationship to parent clock:

● data passing between parent and its derived clock
● data passing between sibling clocks, forcing write and read on edges known to be safe
● …

clock_strobes.vhd takes the two clocks and generates array of phase strobes (example N=4):

Occupies <5 Luts and <20 FFs ⇒ don’t bother distributing strobes, just instantiate a copy 
wherever you need

15
Álvaro Navarro Tobar - 12/6/2024



Conclusions
● I thought it might be useful to have a framework to help with placement that 

makes it a little more friendly and I am working on it.
● It’s very beta but already making my life easier with placement
● Placement helps a lot with identifying problems with RTL
● Placement can make a difference in getting those last 100 ps
● Wishlist/future work in backup
● Record (de)serializaton and clock_strobes also save me time (and bugs)

Discussion

● Does it sound interesting?
● Any advice on how to make it better or what else to include?
● Or any tips on timing closure in general that you want to share?
● …?

16
Álvaro Navarro Tobar - 12/6/2024



Wishlist/future work, sorted by increasing unlikeliness

● refactoring for better quality code
● non-rectangular pblocks, could improve RAM/DSP resources usage
● increase the vertical granularity
● nested pblocks: could make sense to give space to an entity, and hand place a 

particularly critical subset of its registers. Currently achieved by just doing 2 pblocks, 
one that includes the other

● some columns have either slices or laguna depending on their vertical position on 
the SLR. currently just assuming they're always slices

● LUTs used for RAM are not taken into account. makes no distinction on different 
kinds of slices or usages for LUTs

● Provide feedback on costly routing: some horizontal/vertical paths have more 
dramatic effects on timing than others (crossing columns of DSPs or IO blocks) 
Could this info be incorporated to provide more info to the user doing the 
placement?

● automatic reading of vivado outputs to calculate resource utilization
● other FPGAs? other vendors?
● a nice GUI

17
Álvaro Navarro Tobar - 12/6/2024


