Edoardo Orzes

CERN - EP ESE BE - 12 June 2024

Phase Monitoring and Alignment on AMD Transmitters for Timing Distribution in HEP

Contents

- What is phase determinism and alignment
- Why is it needed
- Proposed transceiver configuration
- Phase monitoring and alignment measurements
- DDMTD theory
- Comparison with other solutions

Particles are maintained in their configuration thanks to the RF Cavities in point 4.

Bunch Structure in LHC

CMS

Saint Genis

ALICE

Phase Stability in HL-LHC

- Adding a 4th dimension allows to distinguish superposed collisions in space.
- Picosecond-level phase stability is required.

	DRDT	< 2030	2030-2035	2055-2040	2040-2045	2
gh data rate ASICs and systems	7.1					
w link technologies (fibre, wireless, wireline)	7.1				• • •	
wer and readout efficiency	7.1					
ont-end programmability, modularity and configurability	7.2					
elligent power management	7.2				$\bullet \bullet \bullet$	Ŏ
Ivanced data reduction techniques (ML/AI)	7.2				Ŏ	Ŏ
gh-performance sampling (TDCs, ADCs)	7.3					
gh precision timing distribution	7.3					
ovel on-chip architectures	7.3					
diation hardness	7.4					
yogenic temperatures	7.4					
liability, fault tolerance, detector control	7.4					
ooling	7.4					Ŏ
vel microelectronic technologies, devices, materials	7.5					
icon photonics	7.5					
-integration and high-density interconnects	7.5				Ö Ö Ö	Ŏ
eping pace with, adapting and interfacing to COTS	7.5					Ŏ
		_				

Must happen or main physics goals cannot be met

Important to meet several physics goals

Desirable to enhance physics reach

R&D needs being met

• With the High-Lumi upgrade there will be 200 collisions per bunch crossing, which is a factor of 5 from the current scenario. High Pileup because of superposed collisions.

Timing Distribution System - ATLAS Network

- The Reference Clock is embedded in the data stream.
- To maintain synchronization the clock is recovered from the incoming data and used as a reference for the next transmission of the cascade.
- The transmission is synchronous (phase aligned) to its reference clock.

Phase Alignment

- slower clock. (Ex: 9.6Gbps with 240MHz clock means division by 40)
- To handle the data always with the same offset, frame headers are used to perform the alignment.
- the comma is in the predefined position.

0100101001	1011001001	1101001011	Comma (10 bit)
0100101001	1011001001	1101001011	0100110110
0100101001	1011001001	1101001011	0100110110

Data streams are parallelized when entering in an FPGA, to be handled with a

• With 8b10b encoding, the headers are called commas: in the receiver a state machine performs the alignment by shifting bit by bit the parallelized data until

Phase Alignment in the Receiver

FPGA

- Data and Recovered Clock are both aligned using the comma as a reference
- Between startups, without alignment the divided recovered clock jumps by n UI (1UI = 1/datarate)

Default clocking architecture (non deterministic)

Proposed clocking architecture for Phase Monitoring and Alignment

Figure 3-29: **TX Serial and Parallel Clock Divider**

- It is possible to extract the serializer clock, XCLK, which is fixed phase with the data stream
- A DDMTD measures the phase between XCLK and TxRef
- The transceiver Phase Interpolator (PI) is controlled via DRP to perform the phase shift
- The step is UI/64 (1UI = 1/datarate)
- The required shifts are by n x 64

Default clocking architecture (non deterministic)

- The phase relation between XCLK and the Data Stream is always fixed

Tx UI Alignment test with MyUIAligner – Aligner disabled

Si5391-A as TxRef, Zynq FPGA + DDMTD + TxPI, no bufstatus flag used.

At each tx reset the phase relation between XCLK and RefClk changes by n UI

Tx UI Alignment test with MyUIAligner – Aligner disabled

Deterministic solution

Tx UI Alignment test with MyUIAligner

Si5391–A as TxRef, Zyng FPGA + DDMTD + TxPI, no bufstatus flag used.

My phase alignment project: https://gitlab.cern.ch/eorzes/tx-ui-aligner/-/tree/master

Tx UI Alignment test with MyUIAligner

1.4ps phase determinism within 1000 tx resets

• XCLK-TxRef & Data-TxRef

DDMTD Digital Dual Mixer Time Difference

- HDL module which allows measure phase inside the FPGA with ps-level accuracy
- Requires an offset clock to be slightly slower than the input clock

My DDMTD: https://gitlab.cern.ch/eorzes/tx-ui-aligner/-/tree/master/src/hdl/myddmtd Original DDMTD: https://white-rabbit.web.cern.ch/documents/DDMTD_for_Sub-ns_Synchronization.pdf

DDMTD - Sampler

• The output period is the amplification of the input period by a factor of n+1.

$$\nu_{dmtd} = \frac{n}{n+1} \nu_i \qquad \nu_q = \frac{1}{n+1} \nu_i$$

DDMTD - Deglitcher

- At high resolutions jitter is sampled, causing glitches on the sampler's output.
 The deglitcher is a state machine that removes the glitches by choosing as a
- The deglitcher is a state machine th valid transition the last one.

DDMTD - Digital Counter

- A digital counter is used to count between the pulses corresponding to the edges of the two deglitchers
- Averages are necessary to mitigate metastability and jitter
- The conversion in time is given by the following function

phase

$$e_ps = counter_n * 10^{12} * \frac{f_{in} - f_{dmtd}}{f_{in} f_{dmtd}}$$

$$phase = counter_n * T_{dmtd} \frac{T_{in}}{T_q}$$

Measurements from Eduardo Mendes.

HPTD IP Core

- Tx resets causes the transmitted data to change the alignment with the reference clock
- No aligner is present in the transmitter IP core
- tx_phase_aligner is a soft VHDL core to perform the alignment exploiting txbufstatus flag and Elastic Buffer

HPTD IP Core: https://gitlab.cern.ch/HPTD/tx_phase_aligner

Reference

Deterministic solutions:	Proposed UI Aligner	HPTD IP Core	Buffer Bypass	
Determinism	2ps	2ps	Solution	
Resources	1 DDMTD DRP Controller GT's TxPI	FSM for alignment DRP Controller GT's TxPI	/	
Requirements	Access to XCLK	Access to txbufstatus flag	Buffer Bypass setting	

My phase alignment project: https://gitlab.cern.ch/eorzes/tx-ui-aligner/-/tree/master

