i AT AS &)

FEDERkJLNII)\;EE;fJIIEA[?EE FoRrA EXPERIMENT S

FPGA Firmware Design and Verification for the
ATLAS Liquid Argon Calorimeter Trigger Processor

Melissa Aguiar, Marcos Oliveira and Lucca Viccini

12/06/2024

ATLAS

EXPERIMENT

Agenda

> Motivation

> Design flow

> Design examples

Partial-mesh switch matrix

Recurrent operations
Expensive operations

0O O O O

Clock retargeting

> Summary

ATLAS

EXPERIMENT

Motivation

> |ttook ~8 years to develop the LAr backend firmware currently running at P1:
o Logic implemented using time-division multiplexing (TDM);
o Timing closure is very challenging and the area utilization is high.

> Exploration studies showed that a new architecture with parallel logic and design abstraction based on HLS can improve the
overall design (provide lower logic usage, latency, better code readability, timing closure, design verification, see [1]).
O The resource sharing is implemented automatically only when needed using HLS.

> We decided to take these studies further and redesign two blocks of the current firmware in view of:
o Reducing total area utilization by routing data more efficiently — allowing to reduce the number of filtering blocks (high area);
o Learn more about leveraging parallelization versus serialization for our use cases;
o Test if HLS can be beneficial for future detector upgrades.

o
- TTC

TDAQ/Monitoring -
[i
g 128! 1.2 !
afl £, E51 55 1
8 | ig User Code | g-
= =
186! 18§ !
8 S| 1
1°© 1
$ =% Jd E 3 -
IPBus controller
m 4= Avalon® Memory Mapped interfaces
= Avalon® Streaming interfaces
LATOME Block Diagram.

[11 Silva Oliveira, Marcos Vinicius. 2022. “LATOME Firmware in the Long-Term.” https://indico.cern.ch/event/1226981/#84-latomefirmware-in-the-long.

https://indico.cern.ch/event/1226981/#84-latomefirmware-in-the-long

Overview of the LATOME HLS Design Flow

1 kinclude "enc.h”
2 //#include "efex_mle_array.h"
3 #include <mc_scverify.h>

f eclipse

6= void CCS_BLOCK(efex_mle) (const e_type et,
7 const bool ena,

LIBRARY IEEE;

const bool vld,

USE IEEE.STD_LOGIC 1164.ALL;
USE IEEE.STD_LOGIC ARITH.ALL;

SIEIERES

Catapult

ENTITY efex_mle IS
——energy—» reg —>

9 efex_code_type &code){ PORT(
10 const int efex_codes[] = {2, 2, 3, 3, 4, ¢ et : IN STD LOGIC VECTOR (17 DOWNTO 0);
1 // efex_codes array with 11644 elements . 8

12
13 if(et < -60) {
14 code = 1;

15 } else if (et > 11583) {

16 code = 1020;

17 } else { ARCHITECTURE
18 code = efex_codes[et+60]; - Default
19

20

21 }

Quick simulations

and functionality
change iterations

CI/CD Synplify Pro’

code : OUT STD LOGIC VECTOR (9 DOWNTO 0)

);
END efex mle;

- Interconnect Declarations
SIGNAL operator_ 18 true acc_itm 16 1 : STD
SIGNAL operator_ 18 true acc_itm 12 1 : STD

vl OF efex_mle IS
Constants

Quick Fmax, latency
and area
estimations,

respective
=) implementation
QUARTUS “ trade-offs, and RTL

simulation

PRIME /

DESIGN SOFTWARE

Design exploration wrapper

——masked—> reg —>

ATLAS

EXPERIMENT

ﬁiARTUS ,

DESIGN SOFTWARE

—vi— e > gfeX_mie —|ise—code>

| Fmax
304.79 MHz

Final RTL
characterization,
and area and Fmax

validation using
design explorer, see
slide 8 from [1]

[1] Silva Oliveira, Marcos Vinicius. “LATOME Firmware in the Long Term.” 2023. https://indico.cern.ch/event/1260250/#84-latome-firmware-in-the-long.

https://indico.cern.ch/event/1260250/#84-latome-firmware-in-the-long

Example A - Partial-mesh Switch Matrices

> Each board receives detector data:
o 48 optical fibers — transfer data from 8 sensors using TDM.

O 00 N O Ul A W N HEH O

> Original design kept unchanged the TDM interface and routed the data to the respective
filtering blocks in multiple steps. 0173458 78D

w
00! e
@

full-mesh switch matrix example

All LATONE mappings

> The new architecture deserialize the input data and routes them to the filtering blocks in HEHE
a single step implementation using a switch matrix. i

o The implementation of a full-mesh switch matrix requires 131% of the FPGA area;

o We analysed the required routing for our 116 boards and implemented a sparse
switch matrix that required only 4% of the FPGA area:

m Comparable area to previous TDM solution;

m Less than half of the latency.

partial-mesh (sparse) switch matrix example,
for more examples see here

5
s

https://larpy.docs.cern.ch/upgraded_production/switch_matrix/index.html

)
Example B - Recurrent Operations

EEEEEEEEEE

> We need to repeat a multi-linear encoding operation 320 times.
> We write our HLS code without needing to know beforehand if and how resource sharing will be used.
o We only write such operation in a loop and we can decide later if:
i. Process all 320 inputs in parallel using dedicated blocks for each input;
ii. Reusing some of encoding blocks to process multiple inputs using TDM.
> The area was reduced by 40% with reutilization at the price of nearly doubling the latency [1].
>

Even in a late stage of the project, one can trade area by latency without changing source code.

| Resource Sharing | Latency [Throughput| Slack (ns) | ALMs (%) |
320 blocks 5 1 0.335 19,603 (4.5%)
64 blocks 9 5 0257 | 11,673 (2.7%)
48 blocks 11 7 0278 | 12,089 (2.8%) Area :
Resource sharing options for the multi-linear encoding

mi

=

Latency

3
o

Area vs latency trade-off

6
[1] Aguiar, Melissa S. 2024. “LATOME HLS Implementation.” https://indico.cern.ch/event/1388391/#25-latome-hls-implementation.
s

https://indico.cern.ch/event/1388391/#25-latome-hls-implementation

Example C- Expensive Operations

> Sometimes HLS will fail to find a RTL primitive that matches the function you are asking for:
o Inthese cases, you might need to decompose a single expensive operation into multiple cheaper operations.

EEEEEEEEEE

> For example, Siemens Catapult HLS could not find primitives to implement our large multiplexers running at up to 280 MHz

o We decomposed N-input multiplexer into (N-1) 2-input multiplexers, see illustrative example for N=8.

T

e

/

Decomposing a 8-input multiplexer to 7 2-input multiplexers

ATLAS

EXPERIMENT

Example D - Clock Retargeting

> After multiple blocks were integrated together, at a later stage of the design, we noticed that the switch matrix was
failing to complete timing closure.

> The HLS tool was scheduling several operations in a single clock cycle:
o We retargeted the HLS design to a higher clock frequency;
o The scheduling step was forced to pipeline the design — at the price of higher latency.

F o
0

Solution A Solution B Solution C

T TR :j}ﬁD

=D m)s
—3-» —3 —3
—> —> >
4 —a —4
—5—» —5 —5
6 —Bg —6 Catapult design analyzer showing muxes implemented in different clock cycles
—7> -7 7 o,
4 S “,
Clock Clock Clock Clock Clock Clock S B2
cycle 1 cycle 1 cycle 2 cycle1 cycle2 cycle3 = E:
Illustration of 3 HLS solutions targeting 3 different clock frequencies F m a X E; :E Late n Cy

Fmax vs latency trade-off

EEEEEEEEEE

Summary

> This upgrade exercise is still under progress, but we already learned some lessons;
> Processing data using TDM is complex — in some cases it will be worthy to deserialize the data before processing;

> Describing logic in parallel and using HLS allows one to explore different resource sharing options automatically for
pre-selected portions of the design using TDM:

o Trading area by latency at any stage of the design without changing the source code.

> Reusing a block multiple times using TDM do not always lead to lower area:

o Insome cases lower resource sharing or no resource sharing at all is cheaper.

> HLS might not always find the primitives you need, but you may be able to succeed by decomposing a large task to
multiple smaller ones.

> Describing logic in parallel enables clock retargeting at later stages of the design, and this can be done quickly and
automatically using HLS:
o Trading Fmax by latency at any stage without changing the source code.
9
s

IIIIIIIIIII

EEEEEEEEEE

Thank you!

EEEEEEEEEE

Backup Slides

11

ATLAS

LATOME Firmware

- TTC TDAQ/Monitoring «
| gumm Pty
& : 2D : : o :
9 g | §5 | 1 ¥
E bl gg. : User Code I ‘Sg :
- 2 1 1
g Eg : 1
=] 1 1
1 © I
I ! I !
- I I

q

t L

IPBus controller

g
|
4
I

4==) Avalon® Memory Mapped interfaces
“==> Avalon® Streaming interfaces
LATOME Block Diagram.

12
[1] Aad, Georges et al. “ATLAS LAr Calorimeter trigger electronics phase I upgrade: LATOME Firmware Specification”, 2023. Documentation link.

https://gitlab.cern.ch/atlas-lar-be-firmware/LATOME/LATOME-documentation/-/raw/latome_fw_dev/LAr-LATOME-FW/LAr-LATOME-FW.pdf

LATOME HLS Implementation

Input
Stage

Input
Stage

User

Code

Serial to Parallel
Conversion

+

320 —> 240

i

SOP
= | Generator

o
|
I
1
|
1
1
! Clock Transfer
1
|
|
|
1
1
1
|
|

Parallel to
Serial
Conversion

Frame

Builder

*connect UC
unused ports
to gnd

data or
align

Frame |
Selection

Frame
Concatenate

Parallel to Serial
Conversion
+
Clock Transfer
240 > 280

H484E

LLI

1

SOP

54:62 62:54

|

|

|

1
User : Serial to
Code T Parallel
Bypass : Conversion

I

1

1

1

|

|

1

1

I.

Generator

EET

ATLAS

EXPERIMENT

13

ATLAS

EMEC Adapter Block B

x_internall (x_internal[1] - (x_internal[1] >> 1));
x_internall (x_internall[4] >> 1);
x_internall (x_internal[4] - (x_internall4] >> 1));

nononwononn

> This block distributes the total energy of 6 super-cells into 4

super-cells, keeping the total energy conserved. S
vid_1

vid_i[1] "

vid_i[3] EL, = Er1+|EF2/2]
vid_i[4] El,=Er3+(Er2— |EF2/2])
true; Els=Eps+|EFrs/2]

El,=Erec+(Eps— |Ers/2])

©} It is necessary because some of the EMEC_HEC towers
feature 11 SCs.

L | [| TR 1}

emec adapter.h

static int emec_cfg[EMEC_E][EMEC_N] =

1818 ON 1 1 1.69 260.23 S e

1818 OFF 1 1 2.09 120.23 o el

1819 ON 1 1 1.69 272.23 5l

1819 OFF 1 1 2.09 124.23 e

1820 ON 1 1 1.69 260.23 :

18120 OFF 1 1 0.89 280.23 Configuration matrix from LATOME System Level Development

Quantization studies for EMEC adapter (specifies which supercells will be used in each case)

14
s

https://gitlab.cern.ch/atlas-lar-be-firmware/LATOME/LATOME-hls/firmware/-/blob/devel/src/enc/emec_adapter.h?ref_type=heads

We can trade ATLAS

Resource Sharing Design Exploration atency by area
Solution A (320 MLEs) _

A 5 1 0.335 | 19,603 (4.5%)
B 9 5 0.257 | 11,673 (2.7%)
C 11 7 0.278 | 12,089 (2.8%)

Solution B (64 MLEs)

ena mux

Preliminar performance results for each of the solutions after final
characterization using Intel Quartus Prime

crc

efex mle

Comparing ALMs for the 4 main blocks of the Output Encoder

Solution C (48 MLEs)

ena mux

efex mle

The same code can be targeted
to different resource sha ring Comparing ALMs for the 4 main blocks of the Output Encoder
options and clock frequencies!

The MLE block is the one that takes
the most largest portion of area! efex mie

. . . Comparing ALMs for the 4 main blocks of the Output Encoder
> Solution A: the design can run at any frequency multiple of 40 MHz;

> Solution B: the frequency of the design can be 240 MHz or 280 MHz;

> Solution C: due to the constraints imposed by resource sharing, the frequency can be only 280 MHz. 15

