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Tree Tensor Networks
Tensor Networks have first been developed to investigate quantum many-body systems
on classical computers by efficiently representing quantum wavefunction |ψ⟩ and Hamil-
tonians H [1]. Typically used for energy minimization or time evolution simulations, they
can also be exploited in Machine Learning contexts.

They are the result of the factorization of
very large tensors into networks of smaller
tensors. Several types of decompositions are
possible (MPS, MPO etc.): their approxi-
mation can be tuned by modifying bond di-
mensions[2].

Tree Tensor Networks (TTNs) are a specific type of tensor decomposition that results
in a hierarchical tree-like architecture.
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Tree Tensor Networks: Machine Learning

TTNs can be trained as ML Classifiers fol-
lowing the decision function:

f (x) = W · Φ(x).
The information of an N-features dataset
can be encoded in the network W by con-
tracting it with each data sample Φ(x) and
iteratively updating all the inner tensors [3].

Inference can be performed by contracting
the whole TTN with each sample: the re-
sulting vector stores the classification prob-
abilities for each label of the dataset.

In this project:
• Task: binary classification, scalar

result.
• Datasets: Iris[4], Titanic[5] and

LHCb[1].

• Architectures: 4, 8, 16 input
features.

• Parallelism: full parallel and partial
parallel implementations.

• Training in software, inference in
hardware (FPGA KCU1500).
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Input: Numeric representation

All the values in firmware are represented as 16 bit fixed-point numbers, devoting 1 bit
for the Sign, 1 bit for the Integer part and 14 bits for the Fractional part, corresponding
to [-2,+2] as total representation range, with precision 6.103 · 10−5.
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Following the quantum approach, to perform classification each dataset feature xi is
encoded by a local feature map Φ(xi ) = [cos πxi

2
, sin πxi

2
]. In this way, each sample

represents a separable state |ψ⟩ resulting from the tensor products of 2-dim vectors.
The spinorial mapping encloses input values in the range [-1,+1] and guarantees their
representability.

Input data are sent to the FPGA via AXI-Stream protocol and the feature map is
implemented in hardware. Since the original features live in R, they first need to be
rescaled in [0,π

2
] in software.
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Input: Feature map

sin(x) and cos(x) functions are implemented in hardware with Vivado IP Block Memory
Generator. Each BRAM is configured during implementation (sin.coe, cos.coe) and
fixed in firmware.

BRAM: lat=2 clk, width=16, depth=65536, corresponding to 131 kB/BRAM. The
number of necessary BRAMs is always twice the number of features N.
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Weights

TTN architecture fixed in
firmware by setting: num-
ber of features N, input di-
mension D, bond dimen-
sions Xi , output dimen-
sion O.

Weights loaded from host
PC: try different networks
and perform quantization
tests.

N D X1 X2 X3 O Params Mem. Reg. Blocks
4 2 4 0 0 1 48 96 B 24 1
4 2 8 0 0 1 128 256 B 64 1
8 2 4 4 0 1 208 416 B 104 1
8 2 4 8 0 1 384 768 B 192 1
16 2 4 8 8 1 1728 3 kB 864 2
16 2 4 8 16 1 2944 5 kB 1472 3

The weights are loaded on
FPGA via AXI Lite proto-
col: read-write from host
PC, read-only from TTN.
Blocks of 512x32bit regis-
ters generated as custom
Vivado IP AXI Peripheral.
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Weights

Once the architecture is fixed and the FPGA is programmed, the weights registers can
be written by host PC and read back for verification. During inference, these values
remain static and are only read by the TTN component.

• Crossbar: receives AXI Lite
information and switches between
different register blocks, according to
base_address value.

• Register Slice: slices vectors
([65:0]→2x[31:0]) and registers the
values.

• Reg. Block: 512x32b registers,
1024x16b weights. Forwards W
vector to TTN.

• Timing: timing constraints must be
relaxed. Area is too big but the
values are static.
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Node Contraction

Single node contraction is the basic building
block operation, which in formulae (Einstein
notation) is zµ = Vµ

ν,ρxνyρ, considering 2
vectors x and y of dimension [D] and one
tensor V of dimension [D,D,X ].

Vivado IP DSP Macro for multiplications,
with variable number of registers ∆tDSP
and intrinsic latency. Two different degrees
of parallelization: Full Parallel and Partial
Parallel.

3-factor multiplication, in hard-
ware we split it into the following
stages:

Mult1: x and y cartesian product.
Mult2: multiply results of mult1
by corresponding weights V .
Sum: X parallel sums to compute
final vector components.
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Node Contraction, Full Parallel

Example for D = 2 and X = 2.

Full Parallel computation:
maximize resources and
minimize latency.

1 DSP for each multipli-
cation: D2 at mult1 and
XD2 at mult2.

Adder tree for sum stage.

Tree DSPs:
L∑

i=1

N
2i X2

i−1(Xi + 1)

Tree latency:

∆tDSP

L∑
i=1

2 + log2(X2
i−1)
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Node Contraction, Partial Parallel

Example for D = 2 and X = 2.

Partial Parallel computa-
tion: reduce resources and
increase latency.

1 DSP at mult1, D2 DSP
at mult2 and X serial
sums.

Pipelined computation.

Tree DSPs:
L∑

i=1

N
2i (X

2
i−1 + 1)

Tree latency:

∆tDSP

L∑
i=1

X2
i−1 + Xi + 1
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Node, Layer, Tree

Implementation:

• In library file tensors.vhd
we fix the parameters
N,D0,X0,O.

• A VHDL function derives
the architecture of the TTN
with options:
fixed: Xi = X0

minimal:
Xi = min(X0,D2i

0 )

maximal:Xi = D2i .
• layer.vhd file generates N

2i
nodes for layer i .

• tree.vhd file generates
L = log2(N) layers.

N D0 X0 Impl. DSP Latency [clk]
8 2 4 FP 272 64
8 2 4 PP 105 192
16 2 8 FP 2016 104
16 2 8 PP 501 692
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Firmware

• FIFO only for PP
implementation.

• Project developed
on KCU 1500
Kintex Ultrascale.

• Board plugged in
host PC with
PCIe communication.

• Configurable
registers for
weights: AXI Lite.

• TTN input and
output values: AXI
Stream.

• AXI Stream clck:
250 MHz.
OOC-TTN can
reach 500 MHz.
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Results: Output Comparison

TTN architecture N=8, Xi =[2,4,8,1], 100 samples. TTN architecture N=16, Xi =[2,4,8,8,1],500 samples.
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Results: Quantization
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Results: parameter space.
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Thank you for your attention.
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DSP and Latency

University of Padua L.Borella, A.Coppi, J.Pazzini, A.Stanco, A.Triossi, M.Zanetti
Tree Tensor Network inference on FPGA 24 / 33



Introduction Input & Weights Tree Results Backup

Frequency
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DSP
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DSP
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Latency
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Latency
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Multiplication Usage
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TTN: correlation matrices
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TTN: ROC curves
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TTN: entropy
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