artas O s @QO erc

EXPERIMENT TEL AVIV UNIVERSITY BERAL

Transferring HLS-Generated BDT Model
Into Existing Firmware
In the ATLAS Level-1 Trigger

David Reikher

June 12, 2024

First FPGA Developer’s Forum



25 m

ATLAS L1 Trigger

ATLAS detector

Detector L1 tricaer High-Level
collisions 99 Trigger

@)=\ =

210,000,000 100,000 1,000
events/sec events/sec events/sec

Data
Analysis




L1 Calorimeter Tau Trigger

Layer 3
AnxA® = 0.1x0.1

Tiny section

Layer 2
AnxA® = 0.025x0.1

Layer 0
AnxA® = 0.1x0.1

Electron!
(but in our case it's tau leptons)

4 processing (+ 1 control) FPGAs

- Each FPGA runs 8 instances of tau ID algo.

- Each instance looks at a fixed region in the calorimeter
- Algorithm instances run at 200 Mhz

- Everything is fully pipelined



Machine Learning

1. Trainable models that accept features and produce decisions

2. Better than heuristics at identifying cats/elementary particles in fuzzy settings

Neural Network Boosted Decision Tree (BDT)
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- Can accept very basic features - Engineered features

- Heavy on resources - Light on resources

- Lots of architectures - Parallelizable evaluation => Fast
- Potentially higher performance - Performance often like NN



Latency & Data Rate
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XGBoost

VHDL
BDT RTL code
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19»5 BDT scog:e
2 . BDT condition

Input variables + BDT
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2 . Hadronic fraction condition
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* Diagram not up to date Other things




Requirements

Overall latency constraint: 12 cycles @ 200 Mhz
Fully pipelined — produce result every cycle
High Flexibility for R&D and future changes
Existing interface



Flexibility

* Re-training very likely
- Will change the BDT design’s latency

 BDT input variables might change
- Flexibility in variable computation

* Don’t neglect the simulation
- Must always reflect the model
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BDT Variables

Raw input:
99 cells
_ § HAD

Eachcell: % :

16-bit logic vector —— — EM3
EM2
EM1

PS
ANy

Sum of at most 4 cells = 2-stage adders = 2 cycles

But what if we want to sum over 8 cells? Different cells?

11 variables:

mm 2 d1051
2_.d0375
12_d0625
10_d0000
12.d0125
12_d0990
11_d1493
11_d1315
11 d1164
11_d1690

Not visible:
sum over all cells in
central “tower”

Each variable:
Sum over same-colored cells
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Whoops, these perform better *

* Not really, the actual ones are on the previous slide

12_d0375pl2_d0125
14_d0000
11_d0375pl1_d0125
14_d0982
12_d0625
13_d0000
12_d1051
12_d0990
10_d0000
11_d1690pl1_d1493
12_d1690pl2_d1493
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BDT Variables

Raw input: 99 16-bit numbers

Of which we pick N subsets of varying size (all
configurable)

All of them must be ready at same cycle
- Those that are not must be delayed

Expected to change many times
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BDT RTL

 BDT structure parameters affect BDT latency
- They are expected to change

 BDT score Is used downstream
— Other signals must be delayed accordingly

Make.This. <




@ puthon” 10 the Rescue

Semi- Hardware test
Automatic dm/c (not automatic)
Pipeline: XGBOOSt
ﬂ Bitfiles
. " Firmware
Trained gcl-llf:re]:”nngtlf?)? Synthesis & Implementation
model BDT variables + | VIVADO!
some other params -
(json file) Tested VHDL
I of full algo
The automatic part! / \ - - I
VHDL of " VHDL VHDL of " VHDL )
BDT code Full algo test bench
—_ ‘ — C It
/\conifer ——=  generator SO s
\ / | 3::2;&“0”8, | simulation
\ / - . VNADOS
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Inside the Code Generator-

~Input

Compute these sums: ’

~ - ,/'/
" Output cycle requirements: )
Sum Ready at
cycle #
A unspecified
8
© 7 )
— '//

: Cycles at which inputs are available:

Input Available
At cycle #
X 0
y 1
3
)
//

"AdderTree”

'Y

y
y
y

Represent
sum as
graph

NetworkX

Network Analysis in Python

04— x

Compute latencies

entity AdderTree is
port (
CLK : in std_logic;
IN_Words : in DataWords(2 downto
OUT_Words : out DataWords(2 downto |
OUT_Overflows : out std_logic_vecto
):
end AdderTree;
architecture Behavioral of AdderTree is
signal A_out : DataWordWithCarry := (others == H
signal B_OUT_Word_TO_DelayWC_B_B_d_IN_Word : Datawor-
signal C_OUT_Word_TO DelayWC_C_C_d_IN_Word : DataWord
signal DelayWC_y C_OUT_Word_TO_C_IN_Words :
signal B_out : DataWordWithCarry := (other
signal x : DataWordWithCarry := (others == '0');
signal DelayWC_x_B_OUT_Word_TO_B_IN_Words :
signal DelayWC_x_A OUT_Word_TO_A_ IN_Words
signal y : DataWordWithCarry := (others == '8’
signal DelayWC_y A OUT_Word_TO_A_IN_Words :
signal C_out : DataWordWithCarry := (others
signal z : DataWordWithCarry := (others == '
begin
x(x'high - 1 downto ©
y(y'high - ; downto IN_Words
z(z'high - 1 downto ©) <= IN_Words(
A: entity work. MultlAddcerthCarry
generic map (
stage
delay
)
port map (
CLK

IN_Words

DelayWC_x_A_OUT_Word_TO_A_IN_Words,
DelayWC_y_A_OUT_Word_TO_A_IN_Words,
_ ) Z,
IN_Words( ZERO_DATA_WORD_WITH_CARRY,
OUT_Word == A_out

B: entity work.MultiAdderWithCarry
generic map (

stage =:

delay

Generate fully pipelined VHDL!
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- input - AdderTree

Compute these sums: _
Each orange node accepts N inputs
- And produces sum after [log, IV |cycles
x @ & ! Input “z” is
/ Output cycle requirements: 0 y | ° available only
Sum Ready at AN }(I 41,,/ at cycle 3
cycle # e ——— <z 3
A unspecified 3
B 8 5
\ C 7 / ’, 6 Sum “C”
veles atwhich ot Ll <« ready,
wni N I val . 8
YCIES a C puts are avallanie ’ a.fter delay
Input Available /
At cycle # y
X 0 .
y ) A=x+y+z has 3 inputs,
. 3 ready after 2 cycles

\§ - j /
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AdderTree VHDL output

A O | -—'UTC"GE[\EH-—'TEE FILE DLE,_.*Q_'.‘E [:C. hDT |‘-’I|:|[:IF"L[‘ N |
Generated by graph vhdl (https://gitlab.cern.ch/taulimlfgraph_vhdl), authored by David Reikher

ITNPUTS:
IN Words(o@)
IN Words(1)
IN Words(2)
OUTPUTS:
OUT _Words(@)
OUT Words(1)
OUT Words(2)

This adder tree implements the following sum
A=X+Yy + Z
B X +y
C y + Z

2 8 |

Outputs are ready at clock cycles marked by 'X':
|
|
|
|

|
X |
|




AdderTree VHDL Output

entity AdderTree is
port (
CLK : in std_logic;
IN_Words : in DataWords(2 downto 08);
OUT Words : out DataWords(2Z downto 8);
OUT_Overflows : out std_logic_wvector(2 downto 0)
):
end AdderTree;

architecture Behavioral of AdderTree is

= (others == '8");

signal A out : DataWordWithCarry );
signal B_OUT Word TO DelayWC B B d IN Word : DataWordWithCarry := (others ==
signal C OUT Word TO DelayWC C C d IN Word : DataWordWithCarry := (others =>
signal DelayWC_y C OUT_Word _TO_C_IN Words : DataWordWithCarry := (others ==

signal B_out : DataWordWithCarry := (others == '0');

signal x : DataWordWithCarry := (others => '0');

signal DelayWC_x B OUT _Word _TO B_IN Words : DataWordWithCarry := (others ==

signal DelayWC x A OUT _Word TO_A_IN Words : DataWordWithCarry := (others ==

signal y : DataWordWithCarry := (others == '08');

signal DelayWC_y A OUT_Word _TO_A_IN Words : DataWordWithCarry := (others ==

signal C_out : DataWordWithCarry := (others => '0');

signal z : DataWordWithCarry := (others == '0'");
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AdderTree VHDL Output

C: entity work.MultiAdderWithCarry
generic map (

stage == 1,

delay == €

: )
T L. port map (

- CLK => CLK,
B*"ﬁfﬂa“x i ///**/ IN Words(®) == DelayWC y C OUT Word TO C IN Words,
- IN Words(1) => z,
OUT Word => C OUT Word TO DelayWC C C d IN Word

);

DelayWC C C d: entity work.DelayWithCarry
generic map (
delay == -
)
port map (
CLK => CLK,
IN Word => C OUT Word TO DelayWC C C d IN Word,

MultiAdderWithCarry, };D“T—“Drd => C_out
DelayWithCarry

Slightly modified entities originally written
By Francesco Gonne"a OUT Overflows(2) <= C out(C out'high);

OUT _Words(2) <= C_out(C_out'high - 1 downto 0);




Usage

from graph vhdl.adder graph import AdderGraph
from graph vhdl.comments import AdderGraphCommentGenerator

g = AdderGraph.from sums({"A":["x","y", "z"], "B":["x","y"], "C": ["y", "2"1},
input order=["x", "y", "z"],
output order=["A", "B", "C"],
input ready cycles={'y':1, 'z':3},
required latencies={'B': 8, 'C':7})
g.draw() # Draw summation graph
g.draw latency() # Draw summation graph with latencies computed

# Dump VHDL
adder graph comment gen = AdderGraphCommentGenerator()

design = g.to VHDLGraph(entity name="AdderTree”, comment generator=adder graph comment gen)

design.compile()
design.to vhd file("AdderTree.vhd")
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More Pipeline Functionality

 Compute the delays based on generated BDT RTL latency

e Generate configuration file for the software simulation
containing BDT model and input variable schema

* Run full algorithm in Vivado XSim test bench — compare
with simulation

- On real ATLAS sample
- On randomly generated data (“fuzzing”)
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Summary

ML models are desirable in complex environments
A BDT model is operational in the ATLAS L1 trigger in 2024

Many challenges going from HLS model to production
— Must be very flexible

- Automation is crucial

Code (currently only accessible to CERN account holders)

- AdderTree - Readable auto-generated code for configurable
fully pipelined summations and delays

* https://gitlab.cern.ch/taullmi/graph_vhdl
- Full pipeline code available here:

YOUR BUILDING DOESN'T ~ BUT [T'S BEAUTIFUL,

WORK IN REAL LIFE.

ISN'T [T7

* https://gitlab.cern.ch/taullml/vhdl_bdt testbench

BIM (ARTooNS BY TAREK GHAZZAOVI
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https://gitlab.cern.ch/taul1ml/vhdl_bdt_testbench
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A Word on Simulation

* Final algorithm must be simulated, often in separate places
- Hardware simulation
- Performance studies + further R&D
- Full system simulation (e.g. for monitoring of production system)

* Implement simulation “core” and “interface”
— Core remains fixed and has all core functionality
- Interface changes from one environment to another
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