artas O s @QO erc

EXPERIMENT TEL AVIV UNIVERSITY BERAL

Transferring HLS-Generated BDT Model
Into Existing Firmware
In the ATLAS Level-1 Trigger

David Reikher

June 12, 2024

First FPGA Developer’s Forum

25 m

ATLAS L1 Trigger

ATLAS detector

Detector L1 tricaer High-Level
collisions 99 Trigger

@)=\ =

210,000,000 100,000 1,000
events/sec events/sec events/sec

Data
Analysis

L1 Calorimeter Tau Trigger

Layer 3
AnxA® = 0.1x0.1

Tiny section

Layer 2
AnxA® = 0.025x0.1

Layer 0
AnxA® = 0.1x0.1

Electron!
(but in our case it's tau leptons)

4 processing (+ 1 control) FPGAs

- Each FPGA runs 8 instances of tau ID algo.

- Each instance looks at a fixed region in the calorimeter
- Algorithm instances run at 200 Mhz

- Everything is fully pipelined

Machine Learning

1. Trainable models that accept features and produce decisions

2. Better than heuristics at identifying cats/elementary particles in fuzzy settings

Neural Network Boosted Decision Tree (BDT)

N\
\\
*::‘:%{
1
7/

N
/
@
N

J

e
OO
b.‘.“
AN

\

/
(XRRRL
O

B
)
V)
b
VA
R

- Can accept very basic features - Engineered features

- Heavy on resources - Light on resources

- Lots of architectures - Parallelizable evaluation => Fast
- Potentially higher performance - Performance often like NN

Latency & Data Rate

A3D3 institute https:/a3d3.ai/
| T T

1 I |

| FPGA/ASIC 1 PBlyr

1 TB/yr
- ®

CPU/GPU

—_

o
-
o

-

A
~
|

-

o
-
(4]

LHC HLT

~40 GB/sec

Our)
10 Ligo ZTF :

algorithm veg @ @

107

Streaming data rate [B/s]
=)
r

1011_
LHC L1T punNE

IceCube € Netflix 4K UHD
| | |] | l

10® 10°% 10% 102 10° 102 104 108
Latency requirement [s]
~60 ns

XGBoost

@ python”

<)Pﬂbmh

1F TensorFlow

///4‘%;\ 7

his 4 ml JFINN AConifer WXMachina

VHDL

FPGA

XGBoost

VHDL
BDT RTL code

/\,_ Conifer

Xilinx backend
c/ .. C/C#+ for HLS

AMDn HLS Tool

Vitis

14 \/
"= = mmm RTL Code

19»5 BDT scog:e
2 . BDT condition

Input variables + BDT

Et:

Is seed fé)und

3x(1641) .

2 . Hadronic fraction condition

1 (overflow bit)

16

* Diagram not up to date Other things

Requirements

Overall latency constraint: 12 cycles @ 200 Mhz
Fully pipelined — produce result every cycle
High Flexibility for R&D and future changes
Existing interface

Flexibility

* Re-training very likely
- Will change the BDT design’s latency

 BDT input variables might change
- Flexibility in variable computation

* Don’t neglect the simulation
- Must always reflect the model

10

BDT Variables

Raw input:
99 cells
_ § HAD

Eachcell: % :

16-bit logic vector —— — EM3
EM2
EM1

PS
ANy

Sum of at most 4 cells = 2-stage adders = 2 cycles

But what if we want to sum over 8 cells? Different cells?

11 variables:

mm 2 d1051
2_.d0375
12_d0625
10_d0000
12.d0125
12_d0990
11_d1493
11_d1315
11 d1164
11_d1690

Not visible:
sum over all cells in
central “tower”

Each variable:
Sum over same-colored cells

11

Whoops, these perform better *

* Not really, the actual ones are on the previous slide

12_d0375pl2_d0125
14_d0000
11_d0375pl1_d0125
14_d0982
12_d0625
13_d0000
12_d1051
12_d0990
10_d0000
11_d1690pl1_d1493
12_d1690pl2_d1493

12

BDT Variables

Raw input: 99 16-bit numbers

Of which we pick N subsets of varying size (all
configurable)

All of them must be ready at same cycle
- Those that are not must be delayed

Expected to change many times

13

BDT RTL

 BDT structure parameters affect BDT latency
- They are expected to change

 BDT score Is used downstream
— Other signals must be delayed accordingly

Make.This. <

@ puthon” 10 the Rescue

Semi- Hardware test
Automatic dm/c (not automatic)
Pipeline: XGBOOSt
ﬂ Bitfiles
. " Firmware
Trained gcl-llf:re]:”nngtlf?)? Synthesis & Implementation
model BDT variables + | VIVADO!
some other params -
(json file) Tested VHDL
I of full algo
The automatic part! / \ - - I
VHDL of " VHDL VHDL of " VHDL)
BDT code Full algo test bench
—_ ‘ — C It
/\conifer ——= generator SO s
\ / | 3::2;&“0”8, | simulation
\ / - . VNADOS
15

Inside the Code Generator-

~Input

Compute these sums: ’

~ - ,/'/
" Output cycle requirements:)
Sum Ready at
cycle #
A unspecified
8
© 7)
— '//

: Cycles at which inputs are available:

Input Available
At cycle #
X 0
y 1
3
)
//

"AdderTree”

'Y

y
y
y

Represent
sum as
graph

NetworkX

Network Analysis in Python

04— x

Compute latencies

entity AdderTree is
port (
CLK : in std_logic;
IN_Words : in DataWords(2 downto
OUT_Words : out DataWords(2 downto |
OUT_Overflows : out std_logic_vecto
):
end AdderTree;
architecture Behavioral of AdderTree is
signal A_out : DataWordWithCarry := (others == H
signal B_OUT_Word_TO_DelayWC_B_B_d_IN_Word : Datawor-
signal C_OUT_Word_TO DelayWC_C_C_d_IN_Word : DataWord
signal DelayWC_y C_OUT_Word_TO_C_IN_Words :
signal B_out : DataWordWithCarry := (other
signal x : DataWordWithCarry := (others == '0');
signal DelayWC_x_B_OUT_Word_TO_B_IN_Words :
signal DelayWC_x_A OUT_Word_TO_A_ IN_Words
signal y : DataWordWithCarry := (others == '8’
signal DelayWC_y A OUT_Word_TO_A_IN_Words :
signal C_out : DataWordWithCarry := (others
signal z : DataWordWithCarry := (others == '
begin
x(x'high - 1 downto ©
y(y'high - ; downto IN_Words
z(z'high - 1 downto ©) <= IN_Words(
A: entity work. MultlAddcerthCarry
generic map (
stage
delay
)
port map (
CLK

IN_Words

DelayWC_x_A_OUT_Word_TO_A_IN_Words,
DelayWC_y_A_OUT_Word_TO_A_IN_Words,
_) Z,
IN_Words(ZERO_DATA_WORD_WITH_CARRY,
OUT_Word == A_out

B: entity work.MultiAdderWithCarry
generic map (

stage =:

delay

Generate fully pipelined VHDL!

16

- input - AdderTree

Compute these sums: _
Each orange node accepts N inputs
- And produces sum after [log, IV |cycles
x @ & ! Input “z” is
/ Output cycle requirements: 0 y | ° available only
Sum Ready at AN }(I 41,,/ at cycle 3
cycle # e ——— <z 3
A unspecified 3
B 8 5
\ C 7 / ’, 6 Sum “C”
veles atwhich ot Ll <« ready,
wni N I val . 8
YCIES a C puts are avallanie ’ a.fter delay
Input Available /
At cycle # y
X 0 .
y) A=x+y+z has 3 inputs,
. 3 ready after 2 cycles

\§ - j /

17

AdderTree VHDL output

A O | -—'UTC"GE[\EH-—'TEE FILE DLE,_.*Q_'.‘E [:C. hDT |‘-’I|:|[:IF"L[‘ N |
Generated by graph vhdl (https://gitlab.cern.ch/taulimlfgraph_vhdl), authored by David Reikher

ITNPUTS:
IN Words(o@)
IN Words(1)
IN Words(2)
OUTPUTS:
OUT _Words(@)
OUT Words(1)
OUT Words(2)

This adder tree implements the following sum
A=X+Yy + Z
B X +y
C y + Z

2 8 |

Outputs are ready at clock cycles marked by 'X':
|
|
|
|

|
X |
|

AdderTree VHDL Output

entity AdderTree is
port (
CLK : in std_logic;
IN_Words : in DataWords(2 downto 08);
OUT Words : out DataWords(2Z downto 8);
OUT_Overflows : out std_logic_wvector(2 downto 0)
):
end AdderTree;

architecture Behavioral of AdderTree is

= (others == '8");

signal A out : DataWordWithCarry);
signal B_OUT Word TO DelayWC B B d IN Word : DataWordWithCarry := (others ==
signal C OUT Word TO DelayWC C C d IN Word : DataWordWithCarry := (others =>
signal DelayWC_y C OUT_Word _TO_C_IN Words : DataWordWithCarry := (others ==

signal B_out : DataWordWithCarry := (others == '0');

signal x : DataWordWithCarry := (others => '0');

signal DelayWC_x B OUT _Word _TO B_IN Words : DataWordWithCarry := (others ==

signal DelayWC x A OUT _Word TO_A_IN Words : DataWordWithCarry := (others ==

signal y : DataWordWithCarry := (others == '08');

signal DelayWC_y A OUT_Word _TO_A_IN Words : DataWordWithCarry := (others ==

signal C_out : DataWordWithCarry := (others => '0');

signal z : DataWordWithCarry := (others == '0'");

19

AdderTree VHDL Output

C: entity work.MultiAdderWithCarry
generic map (

stage == 1,

delay == €

:)
T L. port map (

- CLK => CLK,
B*"ﬁfﬂa“x i ///**/ IN Words(®) == DelayWC y C OUT Word TO C IN Words,
- IN Words(1) => z,
OUT Word => C OUT Word TO DelayWC C C d IN Word

);

DelayWC C C d: entity work.DelayWithCarry
generic map (
delay == -
)
port map (
CLK => CLK,
IN Word => C OUT Word TO DelayWC C C d IN Word,

MultiAdderWithCarry, };D“T—“Drd => C_out
DelayWithCarry

Slightly modified entities originally written
By Francesco Gonne"a OUT Overflows(2) <= C out(C out'high);

OUT _Words(2) <= C_out(C_out'high - 1 downto 0);

Usage

from graph vhdl.adder graph import AdderGraph
from graph vhdl.comments import AdderGraphCommentGenerator

g = AdderGraph.from sums({"A":["x","y", "z"], "B":["x","y"], "C": ["y", "2"1},
input order=["x", "y", "z"],
output order=["A", "B", "C"],
input ready cycles={'y':1, 'z':3},
required latencies={'B': 8, 'C':7})
g.draw() # Draw summation graph
g.draw latency() # Draw summation graph with latencies computed

Dump VHDL
adder graph comment gen = AdderGraphCommentGenerator()

design = g.to VHDLGraph(entity name="AdderTree”, comment generator=adder graph comment gen)

design.compile()
design.to vhd file("AdderTree.vhd")

21

More Pipeline Functionality

 Compute the delays based on generated BDT RTL latency

e Generate configuration file for the software simulation
containing BDT model and input variable schema

* Run full algorithm in Vivado XSim test bench — compare
with simulation

- On real ATLAS sample
- On randomly generated data (“fuzzing”)

22

Summary

ML models are desirable in complex environments
A BDT model is operational in the ATLAS L1 trigger in 2024

Many challenges going from HLS model to production
— Must be very flexible

- Automation is crucial

Code (currently only accessible to CERN account holders)

- AdderTree - Readable auto-generated code for configurable
fully pipelined summations and delays

* https://gitlab.cern.ch/taullmi/graph_vhdl
- Full pipeline code available here:

YOUR BUILDING DOESN'T ~ BUT [T'S BEAUTIFUL,

WORK IN REAL LIFE.

ISN'T [T7

* https://gitlab.cern.ch/taullml/vhdl_bdt testbench

BIM (ARTooNS BY TAREK GHAZZAOVI

23

https://gitlab.cern.ch/taul1ml/graph_vhdl
https://gitlab.cern.ch/taul1ml/vhdl_bdt_testbench

XGBoost

AF TensorFlow

O PyTorch

his 4 ml

A Conifer

wIFINN
WVX Ma%

'09;. NetworkX

Network Analysis in Python

References

https://arxiv.org/abs/1603.02754
https://github.com/tensorflow/tensorflow

https://github.com/pytorch/pytorch

https://arxiv.org/abs/2103.05579
https://iopscience.iop.org/article/10.1088/1748-0221/15/05/P05026
https://dl.acm.org/doi/10.1145/3020078.3021744

https://iopscience.iop.org/article/10.1088/1748-0221/17/09/P09039

https://github.com/networkx/networkx

Grant # 945878
https://cordis.europa.eu/project/id/945878

Thank youl!

24

https://dl.acm.org/doi/10.1145/3020078.3021744
https://iopscience.iop.org/article/10.1088/1748-0221/15/05/P05026
https://iopscience.iop.org/article/10.1088/1748-0221/17/09/P09039
https://arxiv.org/abs/2103.05579
https://github.com/pytorch/pytorch
https://github.com/tensorflow/tensorflow
https://arxiv.org/abs/1603.02754
https://github.com/networkx/networkx
https://cordis.europa.eu/project/id/945878
https://github.com/pytorch/pytorch

A Word on Simulation

* Final algorithm must be simulated, often in separate places
- Hardware simulation
- Performance studies + further R&D
- Full system simulation (e.g. for monitoring of production system)

* Implement simulation “core” and “interface”
— Core remains fixed and has all core functionality
- Interface changes from one environment to another

25

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

