

Resource-Efficient Multi-Band Channelization

Timo Muscheid, Luis E. Ardila-Perez, Oliver Sander

$\mathsf{KIT}-\mathsf{The}\ \mathsf{Research}\ \mathsf{University}\ \mathsf{in}\ \mathsf{the}\ \mathsf{Helmholtz}\ \mathsf{Association}$

www.kit.edu

Research background of our working group

Low-latency readout and processing electronics for high-energy physics

Frequency multiplexed readout systems for quantum sensors

Quantum computing and qubit characterization platform

Tools and methods for modular and scalable next-gen DAQ systems

Experiment I : ECHo

- Electron Capture of Holmium¹⁶³
- Goal: Finding upper limit of electron neutrino mass
- Frequency multiplexed magnetic microcalorimeters (MMC)
- Detector bandwidth: 1 MHz

Institute for Data Processing and Electronics (IPE)

ECHo multiplexer with 16 channels:

BW =

1 MHz

 $f_1 f_2$

|a|

 $^{163}Ho + e^- \rightarrow ^{163}Dy + \nu_e + E_c$

Experiment II : BULLKID

- Goal: Direct dark matter search with kgscale targets
- Frequency multiplexed kinetic inductance detectors (KID)
- Detector bandwidth: < 100kHz</p>
 - Slower signal rise time
 - Resonatores can be placed more densely

BULLKID multiplexer with 60 channels

Hardware & build system

- Supported device family: AMD Zynq UltraScale+
 - MPSoC
 - RFSoC
- PL firmware in VHDL (Vivado 2020.2)
- Device image creation with custom build system based on Yocto

Problem statement

Institute for Data Processing and Electronics (IPE)

Intuitive solution

- Direct downconversion by mixing readout tone to DC
- Advantages:
 - Full control of DDC frequency
 - Optimal resolution in time
- Disadvantages:
 - One mixer and filter needed per resonator tone
 - Full parallelisation of processing, no pipelining possible
 - \rightarrow Many PL resources required!

Polyphase channelizer algorithm I: FIR

Input spectrum:

Diagrams based on: Polyphase Channelizer Demystified [Lecture Notes] (doi: 10.1109/MSP.2015.2477423)

Polyphase channelizer algorithm II: DFT

Channelization concept

Institute for Data Processing and Electronics (IPE)

Channelization concept (2)

Block diagram of full channelization stage

Stage 1: Spectrum shift

- Required NCO frequency: f_{spacing} / 2
- NCO memory is automatically optimised for pointer increment of 1
- Fixed configuration during runtime
 - No extensive control logic required
 - No user interface required
- Delay original spectrum for synchronicity

Stage 2: Polyphase filter bank

FIR-Compiler:

- AMD IP-Core: fir_compiler (v7.2)
 - Support for multiple channels
 - User-defined filter taps (.coe-file) with MATLAB + python scripts
 - Parallel paths -> One common filter for original and shifted spectrum

<u>FFT</u>:

- AMD IP-Core: xfft (v9.1)
 - Transform length = Number of subbands
- Channel reorder required (see Xilinx XAPP 1161)

Stage 3: Fine downconversion

Multiple tones in TDM scheme

Channel-specific NCO frequency adjustable via AXI-lite interface at runtime

Resource consumption

Parameters: 250 MHz input frequency, 64 subbands, 200 kHz channel bandwidth

Module	DSP	BRAM	LUT	CLB	
Spectrum shift	3	0.5	133	54	
Polyphase filter bank	64	0	4826	1053	
- FIR filter	52	0	2030	390	
- FFT (x2)	6	0	1341	377	_
Fine downconversion (x2)	7	12	3960	1343	Resources for
- NCO	0	8	3399	834	one channel
- Complex mixer	3	0	2	18	in brute-force
- FIR filter	4	4	330	389	approach

Output of channelization stage

Amplitude noise measurement

Implementation for ECHo on MPSoC

- Low-pass filter of downconversion stage reduces noise above 1 MHz
- Channelizer is not the limiting factor for readout sensitivity

Conclusion

- Full channelization stage for parallel tone processing successfully implemented
- Capable of frequency division multiplexed quantum sensor readout
- Modular system: input frequency, number of channels, bandwidth
 > Easy adaption to requirements of new experiments

Advantages:

- + Very efficient solution
- + Further processing in time division multiplex possible

Disadvantages:

- Limited tone separation capabilities
 - only one tone per subband
 - 2ⁿ subbands

Backup

NCO (Numerically Controlled Oscillator)

- Samples can be stored either in ROM or in LUT, depending on ressource availability
- Frequency resolution depends on number of stored samples
- Frequency and phase are adjustable at runtime by changing start point and increment of the read pointer

Analog downconversion

Software stack

- Custom C++ server daemon for communication with the platform
- Configuration and read-back of PL

modules during runtime

Commands are sent via gRPC to the

user