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Agenda

® |n this presentation I'll walk you through:

- hlsdml workflow

Exploited techniques for model compression and/or high performance

- Post-Training Quantisation, Quantisation-Aware Training, Pruning, FIFO depth optimisation

Applications implemented using hls4ml
- CMS Anomaly Detection - currently online
- Low latency segmentation for autonomous vehicles

- High-performance edge computing image segmentation for earth observation satellites

Future developments

- Quantisation in different ways - more optimised or flexible

- Transformers and graph networks - NN partitioning

- Sweet spot area between fully on-chip architectures and DPU
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About me

e MSc in Computer Science Engineering @ Politecnico di Milano

e [hesis: "Precision vs. Efficiency: A Bit-Level Variable-Length Floating-Point
Approach to Neural Network Quantisation”

e Early Career Professional at CERN (previously Technical Student) working on
his4ml repository and applications mainly to Knowledge Transfer related
projects, EP department

¢ hisdml submission for TinyMLPert

¢ Real-time semantic segmentation on FPGAs for autonomous vehicles with
his4ml ™M nicolo.ghielmetti@cern.ch

v Q @nghielme

e Edge-SpAlce (Work-in-Progress)
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Motivation

¢ Machine Learning algorithms predictive performance improved a lot during the last years

- |s predictive performance all we should care about? CMS Experiment
P P 40MHz proton-proton collisions filtered down to 100kHz
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high level synthesis for machine learning

Vivado™ HLS

HLY )

Keras '
TensorFlow ez
PyTorch : : .
v. . . ; Co-processing kernel
! Menlior :
: A Siemens Business :
model
compressed
model — H'-S. .
| conversion Custom firmware
: design
Usual ML : g

-
~

software workflow

tune configuration
M precision
(Q ) K + NN N reuse/pipeline
TensorFlo

r DR l. ...........
¢ Model-specific optimisations
® C/C++ code with parametrised

(Q) @ O N N X ® Quantisation pragmas

® Pruning ® Modern HLS tools generate
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® Easy Design Space Exploration

fastmachinelearning.org/hls4dml/
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his4ml architecture vs DPU

e Dataflow architecture: each layer is an independent compute ® Deep Learning Processing Unit (DPU) architecture: by
unit (Task-Level Parallelism) fetching instructions from off-chip memory, the DPU

execute different parts of the neural network
¢ [he layers exchange data by using variable length FIFOs.

Large input data can lead to the implementation of large and
resource consuming FIFOs

¢ [ypically 8-bit fixed point quantisation

e On-chip memory Is used to buffer input, intermediate, and

¢ [he whole neural network is implemented on-chip output data

Fully on-chip

FPGA floorplan
UNet segmentation network

Off-Chip Memory

Processing System (PS)

X22332-022420
source: DPUCZDX8G for Zynqg UltraScale+ MPSoCs Product Guide
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his4ml Model Compression: Quantization

o Typically neural networks are trained using floating point datatypes
for weights and activation functions, supported by CPUs and GPUs

- However on FPGAs integer (or fixed point) operations result much
more efficient for resources and latency X

O

* Problem: how to pass from floating point to fixed point without
loosing precision”?

- “Direct” approach: cast floating point to a “big enough” fixed point
representation after training, aka Post-Training Quantisation (PTQ)

- Introduce quantisation in the loop: consider limited precision and
range of quantised datatypes as constraints for weights and
activations during training, aka Quantisation-Aware Training (QAT)

e PTQ can be applied directly to a floating point trained model but it is
not easy to achieve good prediction accuracy after quantisation with
low bitwidth fixed-point representations

e QAT requires to customise the model in order to simulate
guantisation during training but results in better prediction accuracy
for lower bitwidths
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hisdml Model Compression: Pruning

e A neural network may contain many redundant
connections

® Pruning methods generally remove some connections
from the final model, usually applied at training time

¢ his4ml’s fully unrolled implementations can avoid
unnecessary logic for pruned connections and save
resources

e Different methods:

- Regularisation - penalise low value weights, then make
them O

- Set a target level of sparsity (i.e. weights set to 0) of the
neural network after pruning

- Structured pruning - remove continuous blocks of
weights

- Filter pruning - remove entire filters of CNN
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hisdml HW Compression: FIFO Depth Optimization

e By default hlsdml set FIFO depths equal to w x h of input tensors
in order to avoid race conditions by layers accessing the FIFOs

e For small input data and small networks this “worst-case scenario”
approach could be acceptable

e [For large networks, the use of large FIFOs may lead to the
impossibility of implementing the neural network on FPGAS

:/L/

¢ By using part of the input dataset as a calibration data set, the
optimisation aims to identify, through co-simulation, the maximum

UNet segmentation network
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hisdml applications: Anomaly Detection at CMS

W7
p \g-/

AX0 " FPGA floorplan
Variational Autogncoder
i . gg

e CMS experiment exploits a trigger system composed by around
100 FPGAs to filter 40MHz proton-proton collisions down to
100KHz

Variational Autoencoder

e AXOL1TL is a trigger algorithm designed to detect new physics SN
based on a Variational AutoEncoder (VAE) —— R
< —> Probabilistic . > 5 > Probabilistic BN
e VAE has been trained unsupervised on unbiased data comprised i Pecoder
mostly of background events. Input data that are statistically — LI - :
different from previous seen data are identified as anomalies and

collected for inspection

e Quantisation-Aware Training has been adopted to produce a

CMS Experiment at the LHC, CERN

mOdel eﬂ:lCIeﬂt fOr |ﬂfereﬂce ||’] hardware % Data recorded: 2023-May-24 01:42:17.826112 GMT

Run / Event /LS: 367883 / 374187302 / 159

- Consumes 2% of LUTs of Xilinx Virtex 7 FPGAs (purple in floorplan)

- Inference latency: 50 ns, meeting the requirement from the Global
Trigger system for deployment
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his4ml applications: MLPerf Tiny ™

e MLPerf Tiny: benchmarks of Machine Learning for low power devices (MLPerf Tiny) organised by MLCommons

e 4 benchmark datasets, open/closed division allowing/disallowing model retraining or model modifications

e hisdml in open category (for Quantisation Aware Training) achieves competitive performance

CIFAR-10 dataset
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https://mlcommons.org/en/inference-tiny-07/

hls4ml applications: Autonomous Vehicles

e Not only particle physics research - through CERN Knowledge Transfer, activities at =
CERN contributes to society in many ways
(e.g. WWW, LHC computing grid, this project :-) )

e Project undertaken in partnership with Zenseact - Swedish autonomous vehicle ML
solutions company (Paper, web)

e ENet (Efficient Net, very similar to UNet) image segmentation network trained on
Cityscape dataset (road, vehicle, pedestrian, background - 4 output classes) using
AutoQKeras for quantisation and Design Space Exploration

¢ | owest latency model has around 10k parameters, 8 bit quantisation

e Deployed on ZCU102 UltraScale+ MPSoC kit with hls4ml

Model Acc. mloU Latency [ms] BRAM LUT FF DSP
b=1 b=10
EnetHQ 81.1% | 36.8 % 4.9 30.6 | 224.5 (25%) | 76,718 (30%) 87,059 (16%) 450 (18%)
Enet8Q4 | 77.6% | 33.9 % 4.8 30.2 | 342.0(37%) | 166,741 (61%) | 90,536 (16%) 0
Enet8Q8 | 77.1% | 33.4 % 4.8 30.0 | 508.5(56%) | 126,458 (46%) | 134,385 (25%) | 1,502 (60%)
ENet [23] - 63.1% | 30.38 (720)¢ - 257 62,599 192,212 689
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hisdml applications: Earth Observation Satellites

State-of-the-art

Edge SpAlilce
e Using hls4ml to monitor plastics pollution in /s,z — . N
the oceans onboard Earth Observation y
satellites :

N Agenium Space

e Satellites are normally equipped with radiation
tolerant FPGA SoCs, typically used for

communication purposes

DEPLOYMENT

l o ) rr;N‘ \

e Downlink bandwidth is limited, and missions

| i i N thi *' EnduroSat S
typically only look for certain objects (in this ON GROUND \’ ot duroSa
case, plastics pollution) | _

e Deploy DNN onboard satellite to identify

pollution through image segmentation and
downlink only selected images

K

o, e S
Edge @™
5-bands hyper-spectral images from MARIDA Ml
dataset p C e .

® |mage segmentation task applied to tiled

Class
B VD
B DenS
B SpS
Ship
Clouds
Bl VWater
L SWater
B Foam
TWater
SLWater
Bl | and Mask

e Using hls4dml to reach the best pixels / W/ s
(with accuracy requirements)
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hisdml applications: Earth Observation Satellites

e Agenium Space has experience in deploying
neural networks onboard FPGAs adopting
Xilinx Vitis Al tool and in NN compression
exploiting knowledge distillation

o \/itis Al iImplements a DPU architecture on the
FPGAs and exploits the full SoC to coordinate
the computation of the network

- Many power demanding off-chip memory
accesses since NN weights are not fully on-
chip

e Adopting hls4ml a lower power consumption
should be achieved thanks to the fully on-chip
implementation

e Now working on cloud segmentation task
training UNet on ALCD dataset

e 10k parameter model has been implemented

on FPGA; working on specific optimisations to

implement 100k parameter model on FPGA

12 June 2024

ZCU102 MPSoC - Ultrascale+ FPGA

Knowledge Distillation
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https://github.com/CNES/ALCD

Future Developments

e [here is a lot of active research on quantisation techniques

- One recent approach effectively adopted on LLMs is to use compact version of floating point representation

MSB Float32 LSB
O(L{O{T{O|T]O|1|O(L{O{T{O{1{O|1|O|L{O{T{O{T{O[1|OIL|O(L{O[1]O]1
S > Exponent [8 bit] < | » Mantissa |23 bit] =

‘ FloatXeYm |
MSB AN AN~ LSB
O(L{O{2{O{1]--|-(L{O{L{O{Z{O]1]O|L]O[L{O[L{O[I{O|1T]O|L|Of-|"|"

S = Exponen t |e bit] = | > Mantissa [m bit| =

e Find a sweet spot between current his4ml fully on-chip approach and DPU

- Fully on-chip implementations have advantages (reduced power consumption and latency) but the implementation of big models
on a single board is hard/impossible

e Partitioning big models in order to deploy them in a distributed fashion on multiple FPGAS

- Through QONNX it could be possible to estimate before HLS what is the resource cost and latency of parts of the network in
order to perform the partitioning in a structured way
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1 hanks!
Questions?

Nicolo Ghielmett
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