
Under the Canopy: Exploring Conifer for
Low-Latency Decision Forests on FPGAs

Sioni Summers
sioni@cern.ch sioni.web.cern.ch

12th June 2024

mailto:sioni@cern.ch
http://sioni.web.cern.ch

Conifer - Sioni Summers12 June 2024

conifer for Decision Forests
• Decision Forests are still relevant for edge / constrained ML:

- Fast, lightweight, robust (arXiv:2207.08815, IML keynote)

• conifer is a tool to map DFs onto FPGA firmware

- On Python Package Index: pip install conifer

• A Decision Tree splits on data variables until reaching a leaf

- Leaves associate a score corresponding to prediction probability

• A Decision Forest is an ensemble of Decision Trees

- Randomisation of each DT as a form of regularisation

- Ensemble score is an aggregation over trees e.g. sum

• conifer reads from popular DF training tools and writes FPGA
projects

- Implemented with high parallelism for low latency and high
throughput

• This talk will present the implementations and design considerations

2

VHDL

Internal
Representation

FPU

https://arxiv.org/abs/2207.08815
https://indico.cern.ch/event/1297159/contributions/5766806/

Conifer - Sioni Summers12 June 2024

conifer applications

3

Image segmentation for blood vessels tracking in
an embedded medical device (1779 FPS at 3.8 W)

pT filtering in an eFPGA in a
tracking detector frontend
(25 ns latency, 500 LUTs)

Electron reconstruction in
CMS Phase 2 Level 1
Trigger
(< 50 ns latency)

Tau reconstruction in ATLAS
Run 3 calorimeter trigger

(see David Reikher talk)

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/L1CaloTriggerPublicResults#ATLAS_Level_1_calorimeter_eFEX_t

Conifer - Sioni Summers12 June 2024

Decision Tree Inference
• Start at the root node - compare the selected feature with the threshold, go left or right depending on result

4

3
0.5

4
0.4

5
-0.5

6
-1

1
x7 <= 2

2
x1 <= 9

0
x4 <= 7

x = [x0, x1, x2, x3, x4, x5, x6, x7]

Conifer - Sioni Summers12 June 2024

• Start at the root node - compare the selected feature with the threshold, go left or right depending on result

5

3
0.5

4
0.4

5
-0.5

6
-1

1
x7 <= 2

2
x1 <= 9

0
x4 <= 7

x = [-, 12, -, -, 3, -, -, 5]

Decision Tree Inference

Conifer - Sioni Summers12 June 2024

• Start at the root node - compare the selected feature with the threshold, go left or right depending on result

• Continue until reaching leaf - compare the selected feature with the threshold, go left or right depending on result

6

3
0.5

4
0.4

5
-0.5

6
-1

1
x7 <= 2

2
x1 <= 9

0
x4 <= 7

x = [-, 12, -, -, 3, -, -, 5]

Decision Tree Inference

Conifer - Sioni Summers12 June 2024

• Start at the root node - compare the selected feature with the threshold, go left or right depending on result

• Continue until reaching leaf - compare the selected feature with the threshold, go left or right depending on result

• The value of the terminal leaf is the tree prediction

7

3
0.5

4
0.4

5
-0.5

6
-1

1
x7 <= 2

2
x1 <= 9

0
x4 <= 7

Decision Tree Inference

Conifer - Sioni Summers12 June 2024

Decision Forest Inference
• Repeat the same procedure for every tree in the ensemble, sum up the tree scores for the BDT prediction

• Apply the inverse of the training loss function to obtain class probabilities

8

Conifer - Sioni Summers12 June 2024

Conifer Implementation

9

• For a tree: find which leaf is reached given a data sample x
• ‘Invert’ the problem: for each node ask “does the decision path reach this node?” starting at the leaves

3 4 5 6

1 2

0

Conifer - Sioni Summers12 June 2024

Conifer Implementation

10

3 4 5 6

1 2

0

• For a tree: find which leaf is reached given a data sample x
• ‘Invert’ the problem: for each node ask “does the decision path reach this node?” starting at the leaves
• For leaf node ‘3’:

- The decision path reaches ‘3’ if: the decision path reached ‘1’ AND the comparison at ‘1’ goes ‘left’

Conifer - Sioni Summers12 June 2024

Conifer Implementation

11

3 4 5 6

1 2

0

• For a tree: find which leaf is reached given a data sample x
• ‘Invert’ the problem: for each node ask “does the decision path reach this node?” starting at the leaves
• For leaf node ‘3’:

- The decision path reaches ‘3’ if: the decision path reached ‘1’ AND the comparison at ‘1’ goes ‘left’
• For node ‘1’:

- The decision path reaches ‘1’ if: the decision path reached ‘0’ AND the comparison at ‘0’ goes ‘left’

Conifer - Sioni Summers12 June 2024

Conifer Implementation
• For a tree: find which leaf is reached given a data sample x
• ‘Invert’ the problem: for each node ask “does the decision path reach this node?” starting at the leaves
• For leaf node ‘3’:

- The decision path reaches ‘3’ if: the decision path reached ‘1’ AND the comparison at ‘1’ goes ‘left’
• For node ‘1’:

- The decision path reaches ‘1’ if: the decision path reached ‘0’ AND the comparison at ‘0’ goes ‘left’
• For node ‘0’:

- The decision path always passes through the root node

12

3 4 5 6

1 2

0

Conifer - Sioni Summers12 June 2024

Conifer Implementation
• For a tree: find which leaf is reached given a data sample x

• ‘Invert’ the problem: for each node ask “does the decision path reach this node?” starting at the leaves

• We can parallelise this over paths by brute force: evaluate all nodes at the same depth simultaneously

• We can pipeline this over different data: each node can do a comparison on new data with II=1

• For each leaf node we have a boolean: TRUE if the decision path reaches leaf, otherwise FALSE

• Concatenate the boolean for each leaf node → select the value corresponding to the leaf

13

3 4 5 6

1 2

0depth 0

depth 1

depth 2

Addr Data
0 S0
1 S1

2 S2

3 S3

Tree score

Conifer - Sioni Summers12 June 2024

Scheduling - Tree
• Did we achieve what we described?

• Vitis HLS Schedule Viewer in GUI

- Tree depth = 5, some sparsity

• All comparisons in parallel at the
start

• Cascade of boolean operations

- AND, OR, XOR, NOT

• ‘Aggregate’ at end

14

x[1] <= 1.12

x[1] <= -1.37 x[2] <= 0.94

x[1] <= -2.11 x[5] <= 1.24 x[1] <= 1.53 2.04

x[7] <= -1.30 x[0] <= 0.55 x[5] <= -1.36 x[5] <= 1.77

x[8] <= -0.30 x[4] <= -0.26 x[6] <= -0.93 x[2] <= 0.47

-1.96 2.04 2.04 2.04 2.04 -0.02 2.04 1.18

x[0] <= -0.89 x[2] <= 1.71 x[8] <= -1.15 x[9] <= -0.07

1.79 0.63 -0.64 1.29 2.04 0.18 1.26 2.04

x[4] <= -0.07 x[1] <= 2.07

x[5] <= -0.86 x[9] <= 1.11 x[2] <= -1.03 x[0] <= 0.98

1.82 0.67 -0.58 1.67 2.04 0.83 2.04 1.24

t (clock cycles)

Conifer - Sioni Summers12 June 2024

Scheduling - Forest
• Did we achieve what we described?

• Vitis HLS Schedule Viewer in GUI

- Number of trees = 20

- Tree from previous slides is one of them

• All tree inferences performed in parallel

• Tree scores summed in pairs

• Total latency: 7 clock cycles

15

t (clock cycles)

Conifer - Sioni Summers12 June 2024

Implementations
• Conifer has both HLS and VHDL

implementations - both targeting the same
architecture previously described and fully
pipelined

• Within some limits the HLS achieves identical
resources to the VHDL
- After synthesizing the HLS-generated HDL
- Caveat: plots are with Vivado HLS 2019.2.

With recent Vitis HLS the performance is
better

• The HLS latency can be lower than the VHDL
- VHDL pipelining was done ‘by hand’

• Resources and latency scales as expected:
- Resource linear with trees, exponential with

depth
- Latency logarithmic with trees, linear with

depth

• Latency within 10-100 ns is achievable

16

‘CS’ = C Synthesis
‘LS’ = Logic Synthesis

Conifer - Sioni Summers12 June 2024

Forest Processing Unit
• So far we looked at ‘static’ BDT evaluation

- One trained model → one HLS function → one IP → one bitfile

- So if the model changes at all, we need to rerun C Synthesis, Logic Synthesis and Implementation → takes hours!

• In next section we will look at a more dynamic & reconfigurable implementation called “Forest Processing Unit” (FPU)

• We would like a base design that can perform inference of ~any BDT model afterwards (within some limits)

• And we would like to take advantage of the FPGA to get good performance (fast inference)

• Idea 1: represent the BDT as data, operate inference on that data, and load new data for a new model

• Idea 2: parallelise over trees by having independent ‘Tree Engines’, aggregate their output for the model

17

Conifer - Sioni Summers12 June 2024

FPU Design
• Idea 1: represent the BDT as data, operate inference on that data, and load new data for a new model over a bus

• Store one node at one address, child indices are pointers to other addresses

18

Tree Engine

Tree
Data

Inference
Logic

Data Bus

Tree:
 index : [0, 1, 2, 3, 4, 5, 6]
 children_left : [1, 3, 5, -2, -2, -2, -2]
 children_right : [2, 4, 6, -2, -2, -2, -2]
 parent : [-1, 0, 0, 1, 1, 2, 2]
 feature : [4, 7, 1, -2, -2, -2, -2]
 threshold : [7, 2, 9, -2, -2, -2, -2]
 value : [-1, -1, -1, 0.5, 0.4, -0.5, -1]

Conifer - Sioni Summers12 June 2024

FPU Design
• Idea 1: represent the BDT as data, operate inference on that data, and load new data for a new model

• To perform inference of a model on some data we need to:

- Read the next node

- Compare the appropriate feature with the threshold

- Get the pointer to the next node

• Upon reaching a leaf, return its score

19

Tree Engine

Tree
Data

Inference
Logic

Data Bus
void TreeEngine(T X[NVARS], DecisionNode nodes[NNODES], U& y){
 #pragma HLS pipeline
 ap_int<ADDRBITS> i = 0;
 auto node = nodes[i];
 node_loop : while(!node.is_leaf){
 #pragma HLS pipeline
 i = X[node.feature] <= node.threshold ?

 node.child_left : node.child_right;
 node = nodes[i];
 }
 y = node.score;
}

Conifer - Sioni Summers12 June 2024

FPU Design
• Idea 1: represent the BDT as data, operate inference on that data, and load new data for a new model

• To perform inference of a model on some data we need to:

- Read the next node

- Compare the appropriate feature with the threshold

- Get the pointer to the next node

• Iteration logic has a ‘loop carried dependency’ between iterations, and a data dependent latency

20

Tree Engine

Tree
Data

Inference
Logic

Data Bus

 +-------------+---------+---------+----------+-----------+-----------+------+----------+
 | | Latency (cycles) | Iteration| Initiation Interval | Trip | |
 | Loop Name | min | max | Latency | achieved | target | Count| Pipelined|
 +-------------+---------+---------+----------+-----------+-----------+------+----------+
 |- node_loop | ?| ?| 3| 3| 1| ?| yes|
 +-------------+---------+---------+----------+-----------+-----------+------+----------+

Conifer - Sioni Summers12 June 2024

FPU Design
• Idea 2: parallelise over trees by having independent ‘Tree Engines’, aggregate their output for the model

• Put as many Tree Engines as will fit and achieve timing closure in the FPGA

• Number of Tree Engines will constrain the model size that fits

21

Tree Engine

Tree
Data

Inference
Logic

Tree Engine

Tree
Data

Inference
Logic

Tree Engine

Tree
Data

Inference
Logic

Tree Engine

Tree
Data

Inference
Logic…

Aggregator

Data Bus

Conifer - Sioni Summers12 June 2024

FPU System Design
• Putting it together

- One function that has arguments for both BDT-data and inference-data, and an ‘instruction’ parameter for what to do

• Define the node memories as static to keep the data in between function calls

- Load nodes once, perform inference later whenever (multiple times)

- Later load new nodes for a different model..

• This code is a simplified view of that:

22

void fpu_top_level(int* X, int* y, int instruction, DecisionNode* nodes){
 #pragma interface …
 static DecisionNode nodes_internal[NTE][NNODES];
 #pragma HLS array_partition variable=nodes_int dim=1
 if(instruction == 0){
 load_nodes(nodes, nodes_internal);
 }
 if(instruction == 1){
 decision_function(X, y);
 }
}

Conifer - Sioni Summers12 June 2024

FPU Floorplan
• FPU with 200 Tree Engines in Alveo

U50 (top) and 100 Tree Engines in
pynq-z2 (bottom)

- Each TE is highlighted in colour (with a
repeating cycle)

• BRAMs for nodes are in columns

• Logic near BRAMs is TE inference logic

• AXI Interfaces used for data bus

- Both for loading models and inference
data

• Whole design is written with HLS

- HLS as a productivity tool

23

Conifer - Sioni Summers12 June 2024

Conclusions
• conifer is a tool to map Decision Forests onto FPGA firmware

- pip install conifer

• In this talk we discussed:

- Some applications: low latency triggering, embedded frontend

- Conifer implementation and approach to executing branched prediction

- HLS and VHDL performance

- Forest Processing Unit: reconfigurable Decision Forest inference architecture designed with HLS

24

Backup

Conifer - Sioni Summers12 June 2024

HLS Code 1 / 3
• Perform all the comparisons simultaneously: unroll the loop

• Store boolean results in a fully-partitioned array “comparison”

26

 // Execute all comparisons
 Compare: for(int i = 0; i < n_nodes; i++){
 #pragma HLS unroll
 // Only non-leaf nodes do comparisons
 // negative values mean is a leaf (sklearn: -2)
 if(feature[i] >= 0){
 comparison[i] = x[feature[i]] <= threshold[i];
 }else{
 comparison[i] = true;
 }
 }

Conifer - Sioni Summers12 June 2024

HLS Code 2 / 3

27

 // Determine node activity for all nodes
 int iLeaf = 0;
 Activate: for(int i = 0; i < n_nodes; i++){
 #pragma HLS unroll
 // Root node is always active
 if(i == 0){
 activation[i] = true;
 }else{
 // If this node is the left child of its parent
 if(i == children_left[parent[i]]){
 activation[i] = comparison[parent[i]] && activation[parent[i]];
 }else{ // Else it is the right child
 activation[i] = !comparison[parent[i]] && activation[parent[i]];
 }
 }
 // Skim off the leaves
 if(children_left[i] == -1){ // is a leaf
 activation_leaf[iLeaf] = activation[i];
 value_leaf[iLeaf] = value[i];
 iLeaf++;
 }
 }

• Compute the node activation (true if decision path traverses node, otherwise false)

Conifer - Sioni Summers12 June 2024

HLS Code 3 / 3

28

 for(int i = 0; i < n_leaves; i++){
 if(activation_leaf[i]){
 return value_leaf[i];
 }
 }

• Compute the node activation (true if decision path traverses node, otherwise false)

Conifer - Sioni Summers12 June 2024

VHDL
• To the right is the VHDL version of the tree

traversal is shown in HLS on the previous
slides

• The main difference is that we have to do
the scheduling of operations to clock cycles
ourselves in VHDL

- The latency of this section of code depends
on the maximum depth of the tree

- This VHDL is “over pipelined” compared to
the HLS

29

 activation(0) <= true; -- the root node is always active
 GenAct:
 for i in 1 to nNodes-1 generate
 LeftChild:
 if i = iChildLeft(iParent(i)) generate
 process(clk)
 begin
 if rising_edge(clk) then
 activation(i) <= comparisonPipe(depth(i))(iParent(i))
 and activation(iParent(i));
 end if;
 end process;
 end generate LeftChild;
 RightChild:
 if i = iChildRight(iParent(i)) generate
 process(clk)
 begin
 if rising_edge(clk) then
 activation(i) <= (not comparisonPipe(depth(i))(iParent(i)))
 and activation(iParent(i));
 end if;
 end process;
 end generate RightChild;
 end generate GenAct;

