Under the Canopy: Exploring Conifer for
| ow-Latency Decision Forests on FPGAS

Sioni Summers

sioni@cern.ch sioni.web.cern.ch
12th June 2024

CMS
CA

'\

A

mailto:sioni@cern.ch
http://sioni.web.cern.ch

- Conifer for Decision Forests T
:j ?t\\hl R @ /i“}\

* Decision Forests are still relevant for edge / constrained ML: \ /A/
- Fast, lightweight, robust (arXiv:2207.08815, IML keynote) C?

e conifer is a tool to map DFs onto FPGA firmware Yandex

CatBoost 'r LightGBM

- On Python Package Index: pip install conifer

* A Decision Tree splits on data variables until reaching a leaf @ ONNX
- Leaves associate a score corresponding to prediction probability
e A Decision Forest is an ensemble of Decision Trees dmlic ‘ eea t é% TMVA

XGBoost

- Randomisation of each DT as a form of regularisation

\

A Conifer

Internal
Representation

- Ensemble score is an aggregation over trees e.g. sum

e conifer reads from popular DF training tools and writes FPGA
projects

- Implemented with high parallelism for low latency and high

throughput .
Vivado ™ HLs-l
e [his talk will present the implementations and design considerations p—— o
12 June 2024 Conifer - Sioni Summers | ;ﬁy;‘j‘&:@‘i:r

https://arxiv.org/abs/2207.08815
https://indico.cern.ch/event/1297159/contributions/5766806/

conifer applications

e y (16 mm)
; AR (, HGCAL Cluster) < 0.2

’ >
= &
: : =
. /] =
z z | Image Ground truth GBDT-7x7 MLP-7x7 CNN-7x7
g o;) - ;T??T?!Efﬂﬂﬁg P CMS Phase-2 Simulation Preliminary ~ 14TeV, 200 PU |mage Segmentation fOI’ blOOd V@SS@'S traCking iﬂ
§ [flavp, cloctons, TightD, 149 <*¥ <24 | an embedded medical device (1779 FPS at 3.8 W)
T eofien
AN o [", wgan et :Lutm
\ ::'2 g 08— grﬁ*h'“ww
] | e 4 ' ' £ g4 T rrr b rr
s 3| - Electron reconstruction in 5 04T ATLAS Preliminary i
== f'g ® 06| * CMS Phase 2 Level 1 5 038 =
— - , o - e .
z «§§| - : Tmatohed electron Tﬂgger .% 0,3;— L1Calo eFEX tau algorithm —;
“ro e PeEeERe (<50 ns latency) £ 025 o signaic 1 - E
W'm’o’o m"o S & . i) E_. Background data _E
T m,muppm». L) 0.2 Q‘ = ;;:n;%:\(/jgﬁ;lneuo) 0'25 a
o . - Tau reconstruction in ATLAS °'5F E
prlIterlng in an eFPGA in a Y IR % T T TR T AT I A T : : 01E -
. 0 10 20 30 40 50 60 70 80 90 100 Run 3 calorimeter trigger ° T e
traCklﬂg deteCtOr fFOﬂteﬂd prN [GeV] (See DaV|d Relkher .talk) 0.05F _|____:
(25 ns latency, 500 LUTs) S e e

o
OO
o

820 840 860 880 900 920
BDT Score

12 June 2024 Conifer - Sioni Summers 3

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/L1CaloTriggerPublicResults#ATLAS_Level_1_calorimeter_eFEX_t

Decision Tree Inference

e Start at the root node - compare the selected feature with the threshold, go left or right depending on result

X = | Xo, X1, X2, X3, X4, X5, X6, X7 I

O C

12 June 2024 Conifer - Sioni Summers

Decision Tree Inference

e Start at the root node - compare the selected feature with the threshold, go left or right depending on result

X=[_1121_1_r31_1_15]

O C

12 June 2024 Conifer - Sioni Summers

Decision Tree Inference

e Start at the root node - compare the selected feature with the threshold, go left or right depending on result

e Continue until reaching leaf - compare the selected feature with the threshold, go left or right depending on result

X=[_1121_1_r31_1_15]

O C

12 June 2024 Conifer - Sioni Summers

Decision Tree Inference

e Start at the root node - compare the selected feature with the threshold, go left or right depending on result
e Continue until reaching leaf - compare the selected feature with the threshold, go left or right depending on result

¢ [he value of the terminal leaf is the tree prediction

O C

12 June 2024 Conifer - Sioni Summers

Decision Forest Inference

e Repeat the same procedure for every tree in the ensemble, sum up the tree scores for the BDT prediction

e Apply the inverse of the training loss function to obtain class probabilities

12 June 2024 Conifer - Sioni Summers

Conifer Implementation

e [or a tree: find which leaf is reached given a data sample x
¢ ‘Invert’ the problem: for each node ask “does the decision path reach this node”?” starting at the leaves

12 June 2024 Conifer - Sioni Summers

Conifer Implementation

e [or a tree: find which leaf is reached given a data sample x
¢ ‘Invert’ the problem: for each node ask “does the decision path reach this node”?” starting at the leaves

e For leaf node ‘3’:

- The decision path reaches ‘3’ if: the decision path reached ‘1° AND the comparison at ‘1’ goes ‘left’

/N

RN

12 June 2024 Conifer - Sioni Summers

10

Conifer Implementation

e [or a tree: find which leaf is reached given a data sample x
¢ ‘Invert’ the problem: for each node ask “does the decision path reach this node”?” starting at the leaves

e For leaf node ‘3’:

- The decision path reaches ‘3’ if: the decision path reached ‘1° AND the comparison at ‘1’ goes ‘left’
e For node ‘1°:

- The decision path reaches ‘1’ if: the decision path reached ‘0" AND the comparison at ‘O’ goes ‘left’

\

N\

12 June 2024 Conifer - Sioni Summers

11

Conifer Implementation

e [or a tree: find which leaf is reached given a data sample x
¢ ‘Invert’ the problem: for each node ask “does the decision path reach this node”?” starting at the leaves
e [For leaf node ‘3’
- The decision path reaches ‘3’ if: the decision path reached ‘1° AND the comparison at ‘1’ goes ‘left’
® For node ‘1°;
- The decision path reaches ‘1’ if: the decision path reached ‘0" AND the comparison at ‘O’ goes ‘left’
e For node ‘0’:

- The decision path always passes through the root node

N\

12 June 2024 Conifer - Sioni Summers

12

Conifer Implementation

e For a tree: find which leaf is reached given a data sample x
¢ ‘Invert’ the problem: for each node ask “does the decision path reach this node?” starting at the leaves
¢ \\V\e can parallelise this over paths by brute force: evaluate all nodes at the same depth simultaneously

e \\We can pipeline this over different data: each node can do a comparison on new data with lI=1

e For each leaf node we have a boolean: TRUE if the decision path reaches leaf, otherwise FALSE

e Concatenate the boolean for each leaf node — select the value corresponding to the leaf

— Tree score

12 June 2024 Conifer - Sioni Summers 13

Scheduling - Tree =

e Did we achieve what we described? moulivg v oulivouliv o uliv o Wl Ui o Wi S Wl o Wi o Wl §

]] | |
e Vitis HLS Schedule Viewer in GUI t (clockcycles) m—mmo —mr e
| . | | | i |

icmp_ins7,_8(icmp)

_ - " icmp_[n57_9(icmp)
Tree depth = 5, some sparsity L
icmp_[n57_11(icmp)

icmp_[n57_12(icmp)

icmp_In57_13(icmp)

. icmp_In57_14(icmp)

o All In parallel at the
icmp_In57_16(icmp)

icmp_In57_17(icmp)

Start icmp_[n57_18(icmp)
icmp_In57_19(icmp)

icmp_[n57_20(icmp)

—— .

e Cascade of boolean operations ek

and_[n73_1(&)
and_In73_2(&)
and_In75_1(C)

- AND, OR, XOR, NOT el e 10

and_[n73_5(&)
xor_In75_4(»)
and_In73_8(&)
£) and_In73_9(&)
e ‘Aggregate’ at ena
and_In75_2(C)
and_In75_3(C)
or_In88_3(|)
or_In88_5(|)
or_In88_8(|)
or_In88_10(|)
or_In88_14(|)
select_[n88_3(C)
select_[n88_5(C)
select_ln88_7(C)
select_[n88_9(C)
select_ln88_11(C)
and_In73_13(&)
and_[n73_16(&)
and_[n75_4(C)
and_In73_18(&)
or_In88_12(|)
or_In88_16(|)
or_In88_18(|)
select_[n88_13(C)
select_[n88_15(C)
select_[n88_17(C)

agg_result(C)

12 June 2024 Conifer - Sioni Summers 14

SChedU“ng - ForeSt t (clock cycles) ——>

Operation\Control Step

decision_function_19(Function)

¢ Did we achieve what we described? — e

decision_function_18(Function)

¢ \/itis HLS Schedule Viewer in GUI

o All tree inferences performed in parallel
® [ree scores summed In pairs

e [otal latency: 7 clock cycles

12 June 2024

- Number of trees = 20

- Tree from previous slides is one of them

decision_function_7(function)
decision_function_6(function)
decision_function_5(function)
decision_function_4(function)
decision_function_3(function)
decision_function_2(function)
decision_function_1(function)
decision_function(function)
decision_function_17(Function)
decision_function_16(function)
decision_function_15(Function)
decision_function_14(Function)
decision_function_13(Function)
decision_function_12(Function)
decision_function_11(function)
decision_function_10(Function)
decision_function_9(function)
decision_function_8(function)
add_[n116_4(+)

add_[n116_5(+)

add_[n116_9(+)

add In116_10(+)

add In116_13(+)

add _In116_15(+)
add_In116_16(+)

add_In116(+)

add_In116_1(+)

add_[n116_2(+)

add_In116_3(+)

add_[n116_6(+)

add_[n116_7(+)

add In116_11(+)
add_[n116_12(+)

add _In116_14(+)

add _In116_17(+)

add _In116_8(+)

add _In116_18(+)
add_In116_19(+)

score_write_In10(write)

Conifer - Sioni Summers

15

Implementations

e Conifer has both HLS and VHDL
implementations - both targeting the same
architecture previously described and fully
pipelined

¢ \Vithin some limits the HLS achieves identical
resources to the VHDL

- After synthesizing the HLS-generated HDL

- Caveat: plots are with Vivado HLS 2019.2.
With recent Vitis HLS the performance is
better

e The HLS latency can be lower than the VHDL
- VHDL pipelining was done ‘by hand’
e Resources and latency scales as expected:

- Resource linear with trees, exponential with
depth

- Latency logarithmic with trees, linear with
depth

e | atency within 10-100 ns is achievable

12 June 2024

LUTs x103

‘CS’ = C Synthesis

‘LS’ = Logic Synthesis

500 - X
[)
4004 X
o
300 H A
o
X o
200 °
X o X HLS CS
100 - +® HLS LS
o e VHDLLS
‘0
O 1 1 1 1 |
200 400 600 800 1000
Number of estimators
14 — ® ® ®
—_ o o o
wn
= 12 1 09X
c:>>’ 000 X
G
S 10 q e
c)
el
G
— 6 -
AR
1 1 1 1 1
200 400 600 800 1000

Number of estimators

Conifer - Sioni Summers

LUTs x103

600 -
500 -
400 -~ X
300 -~
200 -~

100 - X

Maximum Depth

Latency (clock cycles)

Maximum Depth

16

Forest Processing Unit

e So far we looked at ‘static’ BDT evaluation
- One trained model = one HLS function = one IP — one bitfile

- S0 if the model changes at all, we need to rerun C Synthesis, Logic Synthesis and Implementation — takes hours!
¢ |n next section we will look at a more dynamic & reconfigurable implementation called “Forest Processing Unit” (FPU)
¢ \We would like a base design that can perform inference of ~any BDT model afterwards (within some [imits)
e And we would like to take advantage of the FPGA to get good performance (fast inference)
¢ l[dea 1: represent the BDT as data, operate inference on that data, and load new data for a new model

¢ ldea 2: parallelise over trees by having independent ‘Tree Engines’, aggregate their output for the model

12 June 2024 Conifer - Sioni Summers

17

FPU Design

e l[dea 1: represent the BDT as data, operate inference on that data, and load new data for a new model over a bus

e Store one node at one address, child indices are pointers to other addresses

Tree Engine Tree:
1ndex . [0, 1, 2, 3, 4, 5,
children left = [1, 3, 5, -2, -2, -2,
Inference children right : [2, 4, 6, -—-2, -2, -2,
el parent . [-1, 0, O, 1, 1, 2,
feature : [4, 7, 1, -2, -2, -2,
threshold - 7, 2, 9, -2, =2, -2,
value : [-1, -1, -1, 0.5, 0.4, -0.5,

12 June 2024 Conifer - Sioni Summers

FPU Design

e l[dea 1: represent the BDT as data, operate inference on that data, and load new data for a new model
e [0 perform inference of a model on some data we need to:

- Read the next node

- Compare the appropriate feature with the threshold

- (Get the pointer to the next node

e Upon reaching a leaf, return its score

void TreeEngine(T XINVARS], DecisionNode nodes [NNODES], U& y)A{
#pragma HLS pipeline
ap_int<ADDRBITS> i = 0:
Tree Engine auto node = nodes[il];

node_loop : while(!node.is_leaf){
#pragma HLS pipeline

1 = X[node.feature] <= node.threshold ?
Logic

node.child_left : node.child right;
node = nodes[i];

}
Yy = node.score;

12 June 2024 Conifer - Sioni Summers

19

FPU Design

e l[dea 1: represent the BDT as data, operate inference on that data, and load new data for a new model

e [0 perform inference of a model on some data we need to:
- Read the next node

- Compare the appropriate feature with the threshold

- (Get the pointer to the next node

e [teration logic has a ‘loop carried dependency’ between iterations, and a data dependent latency

Tree Engine

p——— e e t———— p———— p——— e p——— +
Latency (cycles) Iteration| Initiation Interval Trip
Loop Name min | max Latency achieved | target Count| Pipelined

Inference — node_loop 7| ? 3 3 1 ? yes
Logic e +————— t——————— e — N —— PE— I +

12 June 2024 Conifer - Sioni Summers

FPU Design

¢ ldea 2: parallelise over trees by having independent ‘Tree Engines’, aggregate their output for the model
e Put as many Tree Engines as will fit and achieve timing closure in the FPGA

e Number of Tree Engines will constrain the model size that fits

Tree Engine Tree Engine Tree Engine Tree Engine

Inference Inference Inference Inference
Logic Logic Logic . Logic

Aggregator

12 June 2024 Conifer - Sioni Summers

21

FPU System Design

e Putting it together

- One function that has arguments for both BDT-data and inference-data, and an ‘instruction’ parameter for what to do

¢ Define the node memories as static to keep the data in between function calls

- Load nodes once, perform inference later whenever (multiple times)

- Later load new nodes for a different model..

e This code is a simplified view of that:

void fpu_top level(intx X, intx y, int instruction, DecisionNodex nodes)q
#pragma 1interface ..
static DecisionNode nodes_internal[NTE] [NNODES];
#pragma HLS array_partition variable=nodes_int dim=1
if(instruction == 0){
load nodes(nodes, nodes internal);

s

if(instruction == 1){
decision_function(X, y);

s

}

12 June 2024 Conifer - Sioni Summers

22

FPU Floorplan

e FPU with 200 Tree Engines in Alveo
U50 (top) and 100 Tree Engines in
pyng-z2 (bottom)

- Each TE is highlighted in colour (with a

repeating cycle)

e BRAMS for nodes are in columns

* | ogic near BRAMs is TE inference logic

o AX| Interfaces used for data bus

- Both for loading models and inference
data

e \Whole design is written with HLS

- HLS as a productivity tool

it iy

o fn

12 June 2024 Conifer - Sioni Summers

Conclusions

e conifer is a tool to map Decision Forests onto FPGA firmware

- plp 1nstall conifer
* |n this talk we discussed:
- Some applications: low latency triggering, embedded frontend
- Conifer implementation and approach to executing branched prediction
- HLS and VHDL performance

- Forest Processing Unit: reconfigurable Decision Forest inference architecture designed with HLS

12 June 2024 Conifer - Sioni Summers

24

Backup

HLS Code 1/ 3

e Perform all the comparisons simultaneously: unrol1l the loop

e Store boolean results in a fully-partitioned array “comparison”

// Execute all comparisons
Compare: for(int 1 = 0; 1 < n nodes; 1++) {
#pragma HLS unroll
// Only non-leaf nodes do comparisons

// negative values mean is a leaf (sklearn: -2)
if (feature[1i] >= 0) {

comparison 1]
telse
comparison 1]

12 June 2024

= x[feature[1]]

= true;

Conifer - Sioni Summers

<= threshold[1];

20

HLS Code 2/ 3

e Compute the node activation (true if decision path traverses node, otherwise false)

12 June 2024

// Determine node activity for all nodes
int 1Leaf = 0;
Activate: for(int 1 = 0; 1 < n nodes; 1++) {
#pragma HLS unroll
// Root node is always active

1f (1 == 0){
activation[l] = true;
telsed

// If this node is the left child of its parent
if (1 == children left[parent[i]]) {

activation[i] = comparison[parent[i]] && activation[parent[i]];
}else{ // Else it is the right child
activation[i] = !comparison|[parent[i]] && activation[parent[i]];
}
}
// Skim off the leaves
if (children left[i] == -1){ // is a leaf
activation leaf[ileaf] = activation[i];
value leaf[1Leaf] = valuel1i];
1Leaf++;

Conifer - Sioni Summers 27

HLS Code 3/ 3

e Compute the node activation (true if decision path traverses node, otherwise false)

for(int 1 = 0; 1 < n leaves; 1i++) {
1f (activation leaf[1]) {
return value leaf[1i];

J

12 June 2024 Conifer - Sioni Summers

28

VHDL

e To the right is the VHDL version of the tree ggﬁi22flon(®) <= true; the root node is always active
traversal is shown in HLS on the previous for 1 in 1 to nNodes-1 generate
slides LeftChild:
if 1 = iChildLeft(iParent(i)) generate
e The main difference is that we have to do E"OFESS (clk)
- - egin
the schedglmg of operations to clock cycles Silf rising edge(clk) then
ourselves in VHDL activation(i) <= comparisonPipe(depth(1i)) (1Parent(1))
| | and activation(iParent(1));
- The latency of this section of code depends end if:
on the maximum depth of the tree end process;
end generate LeftChild,;
- This VHDL is “over pipelined” compared to RightChild:
the HLS if i = iChildRight(iParent(i)) generate
process(clk)
begin

if rising_edge(clk) then
activation(i) <= (not comparisonPipe(depth(i)) (1Parent(1)))
and activation(iParent(1i));
end 1f;
end process;
end generate RightChild,;
end generate GenAct;

12 June 2024 Conifer - Sioni Summers 29

