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conifer for Decision Forests
• Decision Forests are still relevant for edge / constrained ML: 

- Fast, lightweight, robust (arXiv:2207.08815, IML keynote) 

• conifer is a tool to map DFs onto FPGA firmware 

- On Python Package Index: pip install conifer 

• A Decision Tree splits on data variables until reaching a leaf 

- Leaves associate a score corresponding to prediction probability 

• A Decision Forest is an ensemble of Decision Trees 

- Randomisation of each DT as a form of regularisation 

- Ensemble score is an aggregation over trees e.g. sum 

• conifer reads from popular DF training tools and writes FPGA 
projects 

- Implemented with high parallelism for low latency and high 
throughput 

• This talk will present the implementations and design considerations
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https://arxiv.org/abs/2207.08815
https://indico.cern.ch/event/1297159/contributions/5766806/
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conifer applications
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Image segmentation for blood vessels tracking in 
an embedded medical device (1779 FPS at 3.8 W)

pT filtering in an eFPGA in a 
tracking detector frontend 
(25 ns latency, 500 LUTs)

Electron reconstruction in 
CMS Phase 2 Level 1 
Trigger 
( < 50 ns latency)

Tau reconstruction in ATLAS 
Run 3 calorimeter trigger 

(see David Reikher talk)

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/L1CaloTriggerPublicResults#ATLAS_Level_1_calorimeter_eFEX_t
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Decision Tree Inference
• Start at the root node - compare the selected feature with the threshold, go left or right depending on result
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• Start at the root node - compare the selected feature with the threshold, go left or right depending on result
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• Start at the root node - compare the selected feature with the threshold, go left or right depending on result 

• Continue until reaching leaf - compare the selected feature with the threshold, go left or right depending on result
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• Start at the root node - compare the selected feature with the threshold, go left or right depending on result 

• Continue until reaching leaf - compare the selected feature with the threshold, go left or right depending on result 

• The value of the terminal leaf is the tree prediction
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Decision Forest Inference
• Repeat the same procedure for every tree in the ensemble, sum up the tree scores for the BDT prediction 

• Apply the inverse of the training loss function to obtain class probabilities
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Conifer Implementation
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• For a tree: find which leaf is reached given a data sample x 
• ‘Invert’ the problem: for each node ask “does the decision path reach this node?” starting at the leaves
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Conifer Implementation
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• For a tree: find which leaf is reached given a data sample x 
• ‘Invert’ the problem: for each node ask “does the decision path reach this node?” starting at the leaves 
• For leaf node ‘3’: 

- The decision path reaches ‘3’ if: the decision path reached ‘1’ AND the comparison at ‘1’ goes ‘left’
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Conifer Implementation
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• For a tree: find which leaf is reached given a data sample x 
• ‘Invert’ the problem: for each node ask “does the decision path reach this node?” starting at the leaves 
• For leaf node ‘3’: 

- The decision path reaches ‘3’ if: the decision path reached ‘1’ AND the comparison at ‘1’ goes ‘left’ 
• For node ‘1’: 

- The decision path reaches ‘1’ if: the decision path reached ‘0’ AND the comparison at ‘0’ goes ‘left’
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Conifer Implementation
• For a tree: find which leaf is reached given a data sample x 
• ‘Invert’ the problem: for each node ask “does the decision path reach this node?” starting at the leaves 
• For leaf node ‘3’: 

- The decision path reaches ‘3’ if: the decision path reached ‘1’ AND the comparison at ‘1’ goes ‘left’ 
• For node ‘1’: 

- The decision path reaches ‘1’ if: the decision path reached ‘0’ AND the comparison at ‘0’ goes ‘left’ 
• For node ‘0’:  

- The decision path always passes through the root node
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Conifer Implementation
• For a tree: find which leaf is reached given a data sample x 

• ‘Invert’ the problem: for each node ask “does the decision path reach this node?” starting at the leaves 

• We can parallelise this over paths by brute force: evaluate all nodes at the same depth simultaneously 

• We can pipeline this over different data: each node can do a comparison on new data with II=1 

• For each leaf node we have a boolean: TRUE if the decision path reaches leaf, otherwise FALSE 

• Concatenate the boolean for each leaf node → select the value corresponding to the leaf
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Scheduling - Tree
• Did we achieve what we described? 

• Vitis HLS Schedule Viewer in GUI 

- Tree depth = 5, some sparsity 

• All comparisons in parallel at the 
start 

• Cascade of boolean operations 

- AND, OR, XOR, NOT 

• ‘Aggregate’ at end

14

x[1] <= 1.12

x[1] <= -1.37 x[2] <= 0.94

x[1] <= -2.11 x[5] <= 1.24 x[1] <= 1.53 2.04

x[7] <= -1.30 x[0] <= 0.55 x[5] <= -1.36 x[5] <= 1.77

x[8] <= -0.30 x[4] <= -0.26 x[6] <= -0.93 x[2] <= 0.47

-1.96 2.04 2.04 2.04 2.04 -0.02 2.04 1.18

x[0] <= -0.89 x[2] <= 1.71 x[8] <= -1.15 x[9] <= -0.07

1.79 0.63 -0.64 1.29 2.04 0.18 1.26 2.04

x[4] <= -0.07 x[1] <= 2.07

x[5] <= -0.86 x[9] <= 1.11 x[2] <= -1.03 x[0] <= 0.98

1.82 0.67 -0.58 1.67 2.04 0.83 2.04 1.24

t (clock cycles)
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Scheduling - Forest
• Did we achieve what we described? 

• Vitis HLS Schedule Viewer in GUI 

- Number of trees = 20 

- Tree from previous slides is one of them 

• All tree inferences performed in parallel 

• Tree scores summed in pairs 

• Total latency: 7 clock cycles 
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Implementations
• Conifer has both HLS and VHDL 

implementations - both targeting the same 
architecture previously described and fully 
pipelined 

• Within some limits the HLS achieves identical 
resources to the VHDL 
- After synthesizing the HLS-generated HDL 
- Caveat: plots are with Vivado HLS 2019.2. 

With recent Vitis HLS the performance is 
better 

• The HLS latency can be lower than the VHDL 
- VHDL pipelining was done ‘by hand’ 

• Resources and latency scales as expected: 
- Resource linear with trees, exponential with 

depth 
- Latency logarithmic with trees, linear with 

depth 

• Latency within 10-100 ns is achievable

16

‘CS’ = C Synthesis 
‘LS’ = Logic Synthesis
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Forest Processing Unit
• So far we looked at ‘static’ BDT evaluation 

- One trained model → one HLS function → one IP → one bitfile 

- So if the model changes at all, we need to rerun C Synthesis, Logic Synthesis and Implementation → takes hours! 

• In next section we will look at a more dynamic & reconfigurable implementation called “Forest Processing Unit” (FPU) 

• We would like a base design that can perform inference of ~any BDT model afterwards (within some limits) 

• And we would like to take advantage of the FPGA to get good performance (fast inference) 

• Idea 1: represent the BDT as data, operate inference on that data, and load new data for a new model 

• Idea 2: parallelise over trees by having independent ‘Tree Engines’, aggregate their output for the model

17
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FPU Design
• Idea 1: represent the BDT as data, operate inference on that data, and load new data for a new model over a bus 

• Store one node at one address, child indices are pointers to other addresses
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Tree Engine

Tree 
Data

Inference 
Logic

Data Bus

Tree: 
      index          : [ 0,  1,  2,   3,   4,    5,  6] 
      children_left  : [ 1,  3,  5,  -2,  -2,   -2, -2] 
      children_right : [ 2,  4,  6,  -2,  -2,   -2, -2] 
      parent         : [ -1, 0,  0,   1,   1,    2,  2] 
      feature        : [ 4,  7,  1,  -2,  -2,   -2, -2] 
      threshold      : [ 7,  2,  9,  -2,  -2,   -2, -2] 
      value          : [-1, -1, -1, 0.5, 0.4, -0.5, -1]
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FPU Design
• Idea 1: represent the BDT as data, operate inference on that data, and load new data for a new model 

• To perform inference of a model on some data we need to: 

- Read the next node 

- Compare the appropriate feature with the threshold 

- Get the pointer to the next node 

• Upon reaching a leaf, return its score
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void TreeEngine(T X[NVARS], DecisionNode nodes[NNODES], U& y){ 
  #pragma HLS pipeline 
  ap_int<ADDRBITS> i = 0; 
  auto node = nodes[i]; 
  node_loop : while(!node.is_leaf){ 
    #pragma HLS pipeline 
    i = X[node.feature] <= node.threshold ?  

                    node.child_left : node.child_right; 
    node = nodes[i]; 
  } 
  y = node.score; 
}
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FPU Design
• Idea 1: represent the BDT as data, operate inference on that data, and load new data for a new model 

• To perform inference of a model on some data we need to: 

- Read the next node 

- Compare the appropriate feature with the threshold 

- Get the pointer to the next node 

• Iteration logic has a ‘loop carried dependency’ between iterations, and a data dependent latency
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        +-------------+---------+---------+----------+-----------+-----------+------+----------+ 
        |             |  Latency (cycles) | Iteration|  Initiation Interval  | Trip |          | 
        |  Loop Name  |   min   |   max   |  Latency |  achieved |   target  | Count| Pipelined| 
        +-------------+---------+---------+----------+-----------+-----------+------+----------+ 
        |- node_loop  |        ?|        ?|         3|          3|          1|     ?|       yes| 
        +-------------+---------+---------+----------+-----------+-----------+------+----------+
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FPU Design
• Idea 2: parallelise over trees by having independent ‘Tree Engines’, aggregate their output for the model 

• Put as many Tree Engines as will fit and achieve timing closure in the FPGA 

• Number of Tree Engines will constrain the model size that fits
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FPU System Design
• Putting it together 

- One function that has arguments for both BDT-data and inference-data, and an ‘instruction’ parameter for what to do 

• Define the node memories as static to keep the data in between function calls 

- Load nodes once, perform inference later whenever (multiple times) 

- Later load new nodes for a different model.. 

• This code is a simplified view of that:

22

void fpu_top_level(int* X, int* y, int instruction, DecisionNode* nodes){ 
  #pragma interface … 
  static DecisionNode nodes_internal[NTE][NNODES]; 
  #pragma HLS array_partition variable=nodes_int dim=1 
  if(instruction == 0){ 
    load_nodes(nodes, nodes_internal); 
  } 
  if(instruction == 1){ 
    decision_function(X, y); 
  } 
}
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FPU Floorplan
• FPU with 200 Tree Engines in Alveo 

U50 (top) and 100 Tree Engines in 
pynq-z2 (bottom) 

- Each TE is highlighted in colour (with a 
repeating cycle) 

• BRAMs for nodes are in columns 

• Logic near BRAMs is TE inference logic 

• AXI Interfaces used for data bus 

- Both for loading models and inference 
data 

• Whole design is written with HLS 

- HLS as a productivity tool

23
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Conclusions
• conifer is a tool to map Decision Forests onto FPGA firmware 

- pip install conifer 

• In this talk we discussed: 

- Some applications: low latency triggering, embedded frontend 

- Conifer implementation and approach to executing branched prediction 

- HLS and VHDL performance 

- Forest Processing Unit: reconfigurable Decision Forest inference architecture designed with HLS

24
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HLS Code 1 / 3
• Perform all the comparisons simultaneously: unroll the loop 

• Store boolean results in a fully-partitioned array “comparison”
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    // Execute all comparisons 
    Compare: for(int i = 0; i < n_nodes; i++){ 
      #pragma HLS unroll 
      // Only non-leaf nodes do comparisons 
      // negative values mean is a leaf (sklearn: -2) 
      if(feature[i] >= 0){ 
        comparison[i] = x[feature[i]] <= threshold[i]; 
      }else{ 
        comparison[i] = true; 
      } 
    }
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HLS Code 2 / 3
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    // Determine node activity for all nodes 
    int iLeaf = 0; 
    Activate: for(int i = 0; i < n_nodes; i++){ 
      #pragma HLS unroll 
      // Root node is always active 
      if(i == 0){ 
        activation[i] = true; 
      }else{ 
        // If this node is the left child of its parent 
        if(i == children_left[parent[i]]){ 
          activation[i] = comparison[parent[i]] && activation[parent[i]]; 
        }else{ // Else it is the right child 
          activation[i] = !comparison[parent[i]] && activation[parent[i]]; 
        } 
      } 
      // Skim off the leaves 
      if(children_left[i] == -1){ // is a leaf 
        activation_leaf[iLeaf] = activation[i]; 
        value_leaf[iLeaf] = value[i]; 
        iLeaf++; 
      } 
    }

• Compute the node activation (true if decision path traverses node, otherwise false)
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HLS Code 3 / 3

28

   for(int i = 0; i < n_leaves; i++){ 
      if(activation_leaf[i]){ 
        return value_leaf[i]; 
      } 
    }

• Compute the node activation (true if decision path traverses node, otherwise false)
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VHDL
• To the right is the VHDL version of the tree 

traversal is shown in HLS on the previous 
slides 

• The main difference is that we have to do 
the scheduling of operations to clock cycles 
ourselves in VHDL 

- The latency of this section of code depends 
on the maximum depth of the tree 

- This VHDL is “over pipelined” compared to 
the HLS
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  activation(0) <= true; -- the root node is always active 
  GenAct: 
  for i in 1 to nNodes-1 generate 
    LeftChild: 
    if i = iChildLeft(iParent(i)) generate 
      process(clk) 
      begin 
        if rising_edge(clk) then 
          activation(i) <= comparisonPipe(depth(i))(iParent(i)) 
                           and activation(iParent(i)); 
        end if; 
      end process;     
    end generate LeftChild; 
    RightChild: 
    if i = iChildRight(iParent(i)) generate 
      process(clk) 
      begin 
        if rising_edge(clk) then 
          activation(i) <= (not comparisonPipe(depth(i))(iParent(i))) 
                            and activation(iParent(i)); 
        end if; 
      end process;     
    end generate RightChild; 
  end generate GenAct;


