
EmLogic.no The Norwegian Embedded Systems and FPGA Design Centre 

UVVM 
– An introduction to 

the world’s fastest growing 
FPGA verification methodology

(by Espen Tallaksen, CEO EmLogic)

FDF-2024, CERN

The leading FPGA design centre in Norway and Scandinavia  (www.emlogic.no/leading)



▪ Independent Design Centre for Embedded Systems and FPGA

▪ Established 1st of January 2021. Extreme ramp up
• January 2021:        1 person

• June      2023:  → 43 persons (SW:19, HW:4, FPGA:18, DSP:1+)

▪ Continues the legacy from

• All previous Bitvis technical managers are now in EmLogic 

• Verification IP and Methodology provider  

• Course provider within FPGA Design and Verification 

• Accelerating FPGA Design (Architecture, Clocking, Timing, Coding, Quality, Design for Reuse, …)

• Advanced VHDL Verification – Made simple (Modern efficient verification using UVVM)

▪ A potential partner for ESA projects for European companies

• Increased opportunities due to Norway's low geo return

UVVM

UVVM - An Introduction2



UVVM = Universal VHDL Verification Methodology

▪ VHDL Verification Library & Methodology 

▪ Free and Open Source  

▪ Very structured infrastructure and architecture

▪ Significantly improves Verification Efficiency

▪ Assures a far better Design Quality

▪ Recommended by Doulos for Testbench architecture

▪ ESA projects to extend the functionality 

▪ IEEE Standards Association Open source project

▪ Runs on any VHDL-2008 compliant simulator

What is UVVM?

UVVM - An Introduction3



The 2022 Wilson Research Group 
Functional Verification Study (1)

Nearly half the project time is spent in verification

UVVM - An Introduction

Could verification time be reduced without reducing the quality?

4



The 2022 Wilson Research Group 
Functional Verification Study (2)

Half the verification time is spent on debugging

2022 WILSON RESEARCH GROUP, FUNCTIONAL VERIFICATION STUDY
FPGA FUNCTIONAL VERIFICATION TREND REPORT

We can definitely be more efficient!   - structured!

UVVM - An Introduction

Test 
planning

Testbench
development

Creating test and 
running simulation

Debug

Other

5



What enables Quality and Efficiency

UVVM - An Introduction

UVVM targets all of this

▪ Huge improvement potential for more structured FPGA verification

6



Example on test sequencer code 
and transcript/log

log(ID_LOG_HDR, "Check Interrupt trigger clear mechanism");

check_value(irq2cpu, '0', "irq2cpu default inactive");

check_stable(irq2cpu, now – v_reset_time, "Stable irq2cpu");

gen_pulse(irq_source, '1', C_CLK_PERIOD, "Set IRQ source for clock period");

await_value(irq2cpu, '1', 0 ns, 2* C_CLK_PERIOD, "Interrupt expected");

sbi_write(C_ADDR_ITR, x"AA", "ITR : Set interrupts");

2000.0 ns    Check Interrupt trigger clear mechanism

----------------------------------------------------------------------------

 110.0 ns    check_value() => OK, for std_logic '0'. irq2cpu default inactive

 727.5 ns    check_stable() => OK. Stable at 0. Stable irq2cpu

1060.0 ns    Pulsed to '1'. Set IRQ source for clock period

1117.5 ns    await_value(std_logic 1, 0 ns, 20 ns) => OK. Interrupt expected

2020.0 ns    SBI write(A:x"2", x"AA") completed. ITR : Set interrupts

clock_generator(clk, GC_CLK_PERIOD);

irq_source(n)

IRQC

/
n

clk

SBI  (PIF)

arst irq2cpu 

clk gen

test 
seque
ncer

Testbench

2000.0 ns    Check Interrupt trigger clear mechanism

----------------------------------------------------------------------------

 110.0 ns    check_value() => OK, for std_logic '0'. irq2cpu default inactive

 727.5 ns    check_stable() => OK. Stable at 0. Stable irq2cpu

1060.0 ns    Pulsed to '1'. Set IRQ source for clock period

1117.5 ns    await_value(std_logic 1, 0 ns, 20 ns) => OK. Interrupt expected

2020.0 ns    SBI write(A:x"2", x"AA") completed. ITR : Set interrupts

All procedures with:

- Positive acknowledge
  If wanted

- Alert message
  and mismatch report

- Alert count and ctrl

UVVM - An Introduction7



▪ check_stable(),   await_stable()

▪ clock_generator(),   adjustable_clock_generator()

▪ random(), randomize()

▪ gen_pulse()

▪ block_flag(), unblock_flag(), await_unblock_flag()

▪ await_barrier()

▪ enable_log_msg(),   disable_log_msg()

▪ to_string(), fill_string(), to_upper(), replace(), etc…

▪ normalize_and_check()

▪ set_log_file_name(),   set_alert_file_name()

▪ wait_until_given_time_after_rising_edge()

▪ etc…

UVVM Utility Library 
for simple and advanced testbenches

UVVM - An Introduction8



Simple data communication 

May use Utility Library

and provided BFMs

DUT (UART)

p_main  (test-sequencer)

RX TXBFM BFM

uart_transmit(x"2A")

sbi_check(C_RX, x"2A")

sbi_write(C_TX, x"B3")
uart_expect(x"B3")

TB:  172 ns. uart_tb    uart_transmit(x2A) on UART RX

TB:  192 ns. uart_tb    sbi_check(x1, ==> x2A) completed. From UART RX

TB:  192 ns. uart_tb    sbi_write(x2, ==> xB3) completed. To UART TX

TB: ERROR:

TB:     192 ns. uart_tb                   

TB:             value was: 'xB2'.  expected 'xB3'.

TB:             (From uart_expect(xB3))

TB:==============================================================

Free, Open source BFMs:

UART, AXI4-lite, SPI, I2C, 
Avalon MM, AXI4-stream, 
Avalon stream, GPIO, SBI, 
GMII, RGMII, ...

SBI

All well documented

UVVM - An Introduction9



BFM procedures are not sufficient

- BFMs are great for simple testbenches

- Dedicated procedures in a simple package

- Just reference and call from a process

- BUT

- A process can only do one thing at a time

- Either execute that BFM

- Or execute another BFM

- Or do something else

- To do more than one thing:
→ Need an entity (or component)

   (VC = Verification Component)

BFM: Defined here as a procedure only

uart_expect(x"B3")

sbi_write(C_TX, x"B3")

VVC: VHDL Verification Component  (UVVM VC with extended functionality)

UVVM - An Introduction10



VVC: VHDL Verification Component

SBI_VVC

Testcase

Sequencer SBI_VVC

UART (DUT)

RX

Other Ports

Clocks

Bus interface

TX

Interpreter

- Is command for me?

- Is it to be queued?

- If not:
  Case on what to do

Executor

- Fetch from queue

- Case on what to do

- Call relevant BFM(s)
  & Execute transaction

Command 
Queue

UVVM - An Introduction11



RX

BFM to VVC: How?

uart_expect(x"B3")

sbi_write(C_TX, x"B3")sbi_write(SBI_VVCT,1, C_TX, x"B3")

uart_expect(UART_VVCT, 1, RX, x"B3")

TX

UVVM VVCs also include:
Delay-insertion, command queuing, completion detection, activity registration, 
multicast & broadcast, termination, set-up, data fetch, multi-channel support, 
interface checkers, scoreboards, transaction info, local sequencers, etc … 

UVVM - An Introduction12



VVC: Easy to extend (1)

*_VVCInterpreter

- Is command for me?

- Is it to be queued?

- If not:
  Case on what to do

Executor

- Fetch from queue

- Case on what to do

- Call relevant BFM(s)
  & Execute transaction

Command 
Queue

Bit-rate checker

Frame-rate checker

Gap checker

- Easy to add local sequencers

- Easy to add checkers/monitors/etc

UVVM - An Introduction13



VVC: Easy to extend (2)

*_VVC

FIFO

Interpreter

- Is command for me?

- Is it to be queued?

- If not:
  Case on what to do

Executor

- Fetch from queue

- Case on what to do

- Call relevant BFM(s)
  & Execute transaction

Command 
Queue

Bit-rate checker

Frame-rate checker

Gap checker

Queue

Response-Executor

- Easy to handle split transactions

- Easy to handle out of order execution

UVVM - An Introduction14



VVC based TB

p_main  
(test-sequencer)

…
axis…_tx(target, data, …);
axis…_rx(target, data, …);

…

VVC based Testbench

AXI4- 
Stream 

Slave VVC

AXI4- 
Stream 

Master VVC

Clock-Gen
VVC

VVC based Test harness

axistream_transmit(AXISTREAM_VVCT,0, v_data_array, msg);

axistream_expect(AXISTREAM_VVCT,1, v_data_array, "Checking data");

DUT is typically 
VHDL, but could 
also be Verilog, 
SystemVerilog or 
a mix of these

Lego-like test 
harness.  Could 
have lots of VVCs

Even a SW or HW 
developer could 
write test cases

Interface changes 
do not affect the 
test cases

NOTE: All VVCs may be controlled from one single test sequencer

UVVM - An Introduction15



▪ Simultaneous activity on multiple interfaces

▪ Encapsulated → Reuse at all levels

▪ Queue  → May initiate multiple high level commands

▪ Local Sequencers for predefined higher level commands

▪ Unique for UVVM VVCs:

• Fully control and align all VVCs from a single sequencer!

• May insert delay between commands – from sequencer
→ The only system to target cycle related corner cases

• Simple handling of split transactions and out of order protocols

• Common commands to control VVC behaviour

• Simple synchronization of interface actions – from sequencer

• May use Broadcast and Multicast

VVC Advantages

Better Overview, Maintenance, Extensibility and Reuse

UVVM - An Introduction16



Lot’s of free UVVM BFMs and VVCs

• AXI4-lite

• AXI4 Full

• AXI-Stream Transmit and Receive

• UART Transmit and Receive

• SBI

• SPI Transmit and Receive

• I2C Transmit and Receive

• GPIO

• Avalon MM

• Avalon Stream Transmit and Receive

• RGMII Transmit and Receive

• GMII Transmit and Receive

• Ethernet Transmit and Receive

• Wishbone 

• Clock Generator

• Error Injector

All:

- Free
- Open Source
- Well documented
- Example Testbenches

The largest collection 
of 

VHDL Interface Models

VVC: VHDL Verif. Comps.
- Includes the corresponding BFM
Allows:
- Simultaneous interface handling
- Synchronization of interfaces
- Skewing between interfaces
- Additional protocol checkers
- Local sequencers
- Activity detection
- Simple reuse between projects 

UVVM - An Introduction17



Added 2017-19 – in cooperation with ESA 

▪ ESA Extensions in ESA-UVVM-1

• Scoreboards

• Monitors

• Controlling randomisation and functional coverage

• Error injection   (Brute force and Protocol aware)

• Local sequencers

• Controlling property checkers

• Transaction info

• Watchdog  (Simple and Activity based)

• Hierarchical VVCs  - And Scoreboards for these

• Specification Coverage  (Requirement/test coverage)

ESA is helping VHDL designers speed up 
FPGA and ASIC development and 
improve their product quality!

UVVM - An Introduction18



Advanced scoreboard-based TB

p_main  
(test-sequencer)

…
axis…_tx(target, data, …);
axis…_rx(target, data, …);

…

VVC based Testbench

AXI4- 
Stream 

Slave VVC

AXI4- 
Stream 

Master VVC

Clock-Gen
VVC

VVC based Test harness

DUT
Model

AXI4- Stream 
Scoreboard

axistream_transmit(AXISTREAM_VVCT,0, v_data_array, msg);

axistream_receive(AXISTREAM_VVCT,1, v_data_array, "Checking via SB");

UVVM - An Introduction19



Generic Scoreboard

Compare

Statistics

Expected
 data

Actual
data

Queue

Statistics

▪ insert, delete, fetch

▪ ignore_initial_mismatch

▪ indexed on either entry or position

▪ optional source element (in addition to expected + actual)

Counting:

▪ entered

▪ pending

▪ matched

▪ mismatched

▪ dropped

▪ deleted

▪ initial garbage

generic data type

▪ logging/reporting

▪ flushing queue

▪ clearing statistics

Configuration record:

▪ allow_lossy

▪ allow_out_of_order

▪ mismatch_alert_level

UVVM - An Introduction20



▪ Assure that all requirements have been verified

1.Specify all requirements

2.Report coverage from test sequencer(s) (or other TB parts)

3.Generate summary report

Coverage per requirement

Test cases covering each requirement

Requirements covered by each Test case

Accumulate over multiple Test cases

Specification Coverage

Mandatory for Safety and Mission Critical (Strictly required by ESA)
Strongly recommended for good quality assurance
Expensive tools exist…

Requirements 
Traceability 

Matrix

UVVM - An Introduction21



▪ Enhanced Randomisation

• Advanced randomisation in a simple way

▪ Optimised Randomisation

• Randomisation without replacement

• Weighted according to target distribution AND previous events

→ the lowest number of randomisations for a given target

▪ Functional Coverage

• Checking that given scenarios have been verified

The 2nd ESA project – 2020-22

UVVM - An Introduction22



▪ Well integrated with UVVM

• Alert handling and logging in particular

▪ Strong focus on Overview & Readability

• Adding keywords to ease understanding

▪ Easy to Maintain and Extend

UVVM Enhanced Randomisation

Typing code consumes is an insignificant part of the development time.
  

Reading and understanding code is repeated over and over again, and 

is thus a significant part of the development time

     

➔ Investing in better code yields a huge return on investment

Quality & Efficiency enablers

addr <= my_addr.rand_range_weight((0,18,4),(19,31,1));

UVVM - An Introduction23



▪ Define a variable of type t_coverpoint

▪ Add the bins

▪ Tick off bins as their corresponding payload size is used

▪ Continue sending packets until coverage target is reached

Functional Coverage (FC) 
– Typical Sequence

variable cp_payload_size : t_coverpoint;  

cp_payload_size.add_bins(bin(0));

cp_payload_size.add_bins(bin(1)); 

cp_payload_size.add_bins(bin_range(2,254,1)); 

cp_payload_size.add_bins(bin(255,256,2));

cp_payload_size.sample_coverage(payload_size);

while not cp_payload_size.coverage_completed(VOID);

UVVM also has transition coverage

UVVM - An Introduction24



Some FC reports – out of many

UVVM - An Introduction25



▪ Started March 2024

▪ First new features to be released in June

• Completion detection

• Detection of unwanted/unexpected interface activity

▪ More improvements to come

The 3rd ESA project – 2024

UVVM - An Introduction26



▪ Very well documented

• In transition from PDF to html  

▪ Lots of free webinars available

• From Siemens, Aldec, Trias, Verification Futures, etc

▪ New free introduction videos 

• Siemens' Xcelerated Academy

▪ EmLogic courses: https://emlogic.no/courses/

• 'Advanced VHDL Verification - Made simple'

• First planned live online course: November 2024

▪ Testbench examples

• Note: Provided under the 'UVVM supplementary' repo

▪ New: Sharing training material with universities for free

Sources of learning

UVVM - An Introduction27

https://emlogic.no/courses/


UVVM in a nutshell

                                                         UVVM targets all of this

▪ Huge improvement potential for more structured FPGA verification

UVVM (incl. all) is Open Source

UVVM has the largest collection of 
interface models (as BFMs and VVCs)

UVVM may save 200-2000 hours 
on a medium complex project

And at the same time improve 
TTM, MTBF & LCC 

Structure & Architecture
Structure & Architecture

Simplicity

Overview, Readability

Modifiability, Maintainability, Extensibility

Debuggability

Reusability

Usage is exploding

- Used by >35% of all European 
  FPGA designers
- Fastest growing FPGA verification 
  methodology – of all

Game changer for efficiency & quality

UVVM - An Introduction28



Thank you for attending

UVVM 
– An introduction to the world’s 

fastest growing FPGA verification methodology

Feel free to connect on LinkedIn

https://www.linkedin.com/in/espentallaksen/

	Lysbilde 1: UVVM  – An introduction to  the world’s fastest growing  FPGA verification methodology
	Lysbilde 2
	Lysbilde 3: What is UVVM?
	Lysbilde 4
	Lysbilde 5: The 2022 Wilson Research Group Functional Verification Study (2)
	Lysbilde 6: What enables Quality and Efficiency
	Lysbilde 7
	Lysbilde 8: UVVM Utility Library  for simple and advanced testbenches
	Lysbilde 9: Simple data communication 
	Lysbilde 10: BFM procedures are not sufficient
	Lysbilde 11
	Lysbilde 12: BFM to VVC: How?
	Lysbilde 13: VVC: Easy to extend (1)
	Lysbilde 14: VVC: Easy to extend (2)
	Lysbilde 15: VVC based TB
	Lysbilde 16: VVC Advantages
	Lysbilde 17: Lot’s of free UVVM BFMs and VVCs
	Lysbilde 18: Added 2017-19 – in cooperation with ESA 
	Lysbilde 19: Advanced scoreboard-based TB
	Lysbilde 20: Generic Scoreboard
	Lysbilde 21: Specification Coverage
	Lysbilde 22: The 2nd ESA project – 2020-22
	Lysbilde 23: UVVM Enhanced Randomisation
	Lysbilde 24: Functional Coverage (FC)  – Typical Sequence
	Lysbilde 25: Some FC reports – out of many
	Lysbilde 26: The 3rd ESA project – 2024
	Lysbilde 27: Sources of learning
	Lysbilde 28: UVVM in a nutshell
	Lysbilde 29: Thank you for attending

