
Open source formal verification with SymbiYosis

Yann Thoma, 13/06/2024, FPGA developers Forum, yann.thoma@heig-vd.ch

mailto:yann.thoma@heig-vd.ch

2 / 76

REDS institute
Reconfigurable and Embedded Digital Systems

• Competencies
• Embedded software
• FPGA design and verification
• PCB design

• Team
• 8 professors
• 5 senior assistants
• 15 junior assistants

3 / 76

Assumption

You followed the previous talk

4 / 76

That many slides ? Are you crazy ?

Well, we’ll stop at 45 :-)

5 / 76

Goal of digital systems verification

Answering two questions

• Does it work ?

• Are you sure ?

• Really ?

• Well, really really sure ?

• No kidding ?

6 / 76

Digital systems verification

• Verification of a digital system shall allow to assert that the realization of a
system corresponds to its specification

⇒ Proof of its proper behavior

7 / 76

Digital systems verification

• Methodologies
• Fonctional verification

• Simulation
• Emulation

• Formal verification
• Real tests

8 / 76

Functional verification

• Simulation/emulation of the system

• Design of testbenches
• Simulation

• Directed
• Hard to think about all interesting/challenging cases

• Random-based coverage driven
• Not easy to guarantee a good coverage

• Mix
• Good compromise, but time-consuming

9 / 76

Testbench with reference

Testbench ... tb

Specification
description

Ref

HDL description
(synthesizable)

DUV

Stimuli

generator
sti

ref

obs

Output

checking

Synchronisation Errors

10 / 76

Testbench with multiple interfaces

Testbench ... tb

HDL description
(synthesizable)

DUVTest of the bus

Stimuli

generator

sti

obs

Output

verification

Errors

Application tester

Stimuli

generator

sti

obs

Output

verification

11 / 76

TLM / UVM testbench

Top

duv

Testcase

Testbench

VIP (env)

Agent

driver collector

monitorsequencer

vif

Agent

driver collector

monitorsequencer

vif

scoreboard

12 / 76

UVM testbench : UVE project
http ://www.systemverilog.ch/

https://github.com/uve-project/uve

13 / 76

https://github.com/uve-project/uve

A testbench generator
TbGenerator

• Within QuestaFormal, a wrapper instantiating the DUV is required to bind the
assertions modules with the DUV

• Uninteresting code
⇒ Automate this

• https://reds-gitlab.heig-vd.ch/reds-public/TbGenerator
• Generation of code skeletons via Python scripts

• VHDL testbench
• SystemVerilog testbench
• Wrapper for formal proof
• Scripts for command line execution

• Soon : TB with a UVM-like structure (but in VHDL)

Get involved !
14 / 76

https://reds-gitlab.heig-vd.ch/reds-public/TbGenerator

Transaction Level Modeling VHDL Methodology

• What a big name
• Actually just a bunch of interesting stuffs for testbenches :

• Objections to smoothly end a simulation
• Heartbeats to detect inactivity
• FIFOs (bounded and unbounded) for TLM

• Open Source (since yesterday evening)

• https://reds-gitlab.heig-vd.ch/reds-public/tlmvm

15 / 76

https://reds-gitlab.heig-vd.ch/reds-public/tlmvm

Formal verification

• Checking the system against properties

• Proof that the system follows its specifications
• Advantages

• Formal proof, so irrefutable if properties are well written
• Allows to validate part of a system that can then be used in simulation without

further tests

• Disadvantages
• Maybe not adequate for all systems
• Thinking about all the properties is not easy
• Writing good properties is not easy

• Could need to be complemented by functional verification

16 / 76

Formal verification : Software tools

• QuestaFormal, from Mentor Graphics
• Validates properties
• Or finds a counterexample and shows a waveform
• Very close to model checking technics

• SymbiYosis (now Sby)
• Validates properties
• Or finds a counterexample and shows a waveform
• Open Source
• Various engines (model checking of proof)

17 / 76

Formal verification
Languages

• Formal verification needs properties to be written
• Useful for :

• Assertions
• Assumptions
• Coverage

• Languages
• PSL (Property Specification Language) : language-agnostic
• SVA (SystemVerilog assertions) : Inherent to the language
• OVL (Open Verification Library) : Built on top of VHDL/SVA

18 / 76

19 / 76

20 / 76

PSL/SVA
LTL or ?

• PSL
• LTL-style : close to Linear Temporal Logic (until, next, eventually, ...)
• CTL-style : close to Conditional Temporal Logic (existence operator), called Optional

Branching Extension (OBE), but it is not available in QuestaFormal nor Sby
• SERE-style : exploits regular expressions

• SVA
• LTL-style
• SERE-style

• Differences
• At the end you can use one or the other

21 / 76

Some use cases
Examples available at the end of the slides

• Counter

• FIFO (simple)

• FIFO (multi-channel)

• Control/datapath calculator

22 / 76

Testbench vs assertions
Lines of code

Project Lines TB Lines Assertions

Counter 200 4

FIFO 200 30

FIFO multi 300 45

Calculator 350 50

Relevant lines

23 / 76

Context : Comet interceptor

• ESA mission

• Specifically : Comet Camera

24 / 76

Filter wheel and Temperature Control FPGA (FTC)

• Various interfaces

• Telecommands packets (in)

• Telemetry packets (out)

25 / 76

FTC architecture

26 / 76

How to test it ?

27 / 76

Python testbench with cocotb

• Easy integration of VHDL DUV within a python framework

• All tests, scenarios, checking, writing in python

28 / 76

Python testbench with the real hardware

• Efficient reuse for testing the real
hardware

29 / 76

Why adding formal verification ?

• In that context, the opportunity to try SymbiYosis (Sby)

• As a complementary approach to cocotb

30 / 76

Setup

• Tools needed :
• GHDL and SymbiYosis

• CAD suite ready to use
• https://github.com/YosysHQ/oss-cad-suite-build/releases/

• GTKWAVE
• https://gtkwave.sourceforge.net/gtkwave-gtk3-3.3.119.tar.gz

• Both are easy to install

• PSL as the property language

31 / 76

https://github.com/YosysHQ/oss-cad-suite-build/releases/
https://gtkwave.sourceforge.net/gtkwave-gtk3-3.3.119.tar.gz

VHDL - PSL : vunit
Example for a counter

counter

D i
8

En i

Load i

clk i

rst i

Value o
8

32 / 76

VHDL - PSL : vunit
Example for a counter

vunit counter_psl(counter) {

default clock is rising_edge(clk_i);

property prop_incr is always

({(not Load_i) and En_i} |=>

{Value_o=std_logic_vector(unsigned(prev(Value_o))+1)});

assert prop_incr report "Increment error";

property prop_hold is always

({(not Load_i) and (not En_i)} |=> {Value_o=prev(Value_o)});

assert prop_hold report "Hold error";

property prop_load is always ({ Load_i} |=> {Value_o=prev(D_i)});

assert prop_load report "Load error";

assert always Value_o /="XXXXXXXX" report "Error , value is XXXXXXXX";

}

33 / 76

Example : LVDS receiver

LVDS receiver

RxD

RxC

clock

reset

dataOut
8

dataValid

A bit is received on every edge of RxC

34 / 76

Example : LVDS receiver
checking control signals

Detection of 8 edges of RxC, ensuring dataValid goes high at least 5 clock cycles
after the 8th.

assert always(

(not(stable(RxC)))[->8] |=> next_e [0 to 5](dataValid)

) abort(reset or dataValid);

35 / 76

Example : LVDS receiver
checking data

assert always(

dataValid |-> dataOut = realDataOut

) abort(reset);

• Issue here : realDataOut
• Some pieces of VHDL code to build the 8-bit vector during transmission

• It would be elegant to build a property for that
• Feasible in theory, but not available with the Open Source tools

36 / 76

Example : Address decoder

sequence start_transmission is {not(receiving);

(rxDataValid and unsigned(rxData) = TC_START_OF_FRAME)};

sequence data_valid_clk is {not(rxDataValid)[*2]; rxDataValid };

sequence end_transmission is

{start_transmission;data_valid_clk [*7]};

assert always start_transmission |-> startCRC before enByte;

37 / 76

Example : Address decoder

• When a new transmission ends, ack_tc is up only if the telecommand is valid,
otherwise it is down. (requires a reference)

• The output ack_tc is stable while no new transmission ended

assert_valid_ack: assert always

{end_transmission ;[*2]}

|=>

{ack_tc = ref_valid_telecommand };

assert_stable_ack: assert always {

fell(reset) | {end_transmission ;[*2]}}

|=>

stable(ack_tc) until_ end_receiving;

38 / 76

Example : LVDS data builder

lvds_databuilder

busy

clock

crc
8

crcBusy

reset

sendFrame

telemetryData
496

crcData
8

crcEn

crcStart

frameData
16

send

39 / 76

Example : LVDS data builder

Sending starts with AAAA, then 31 data + CRC

40 / 76

Example : LVDS data builder

property frameData_send_eq_telemetryData is

always(

{send and not(send_aaaa_s) and not(send_crc_s)}

|->

{frameData = telemetryData(

telemetryData ’high -cnt_tm_bit_send_s downto

telemetryData ’high -cnt_tm_bit_send_s -15)});

assert property frameData_send_eq_telemetryData;

f_input_data_stay_stable : assume

always ({ stable(telemetryData)});

• cnt_tm_bit_send_s is a counter generated by a process

• send_aaaa_s and send_crc_s are also generated

41 / 76

SymbiYosis wins one set
Against QuestaFormal

counter

D i
8

En i

Load i

clk i

rst i

Value o
8

If the counter decrements once after 1’000’000 clock cycles !

42 / 76

Conclusion

• Formal is a good complementary approach to functional simulation
• A good way for thinking differently with respect to design

• Excellent for control paths
• More difficult for data paths

• Open source tools and PSL are quite OK compared to commercial solutions
• Less powerful, specially with no local variables in properties

• Always try to have generic parameters instead of hardcoded constants
• Modular and reusable code (standard)
• Allows to reduce the search space for formal proofs

43 / 76

Thanks

• Alberto Dassatti

• Enrico Petraglio

• Roberto Rigamonti

• Clément Dieperink

• Löıc Fournier

44 / 76

Questions ?

45 / 76

Supplementary material

46 / 76

Verification of a counter
DUV

• 8-bit counter
• Parallel load
• Incrementing
• Decrementing
• Hold Counter

load

up ndown

load value
8

enable

clk

rst

value
8

47 / 76

Verification of a counter
Testbench

1. Directed tests
• Defined scenarios with borderline cases

2. Random generation of inputs
• Coverage for verifying all borderline cases have been covered

• Max to 0, or 0 down to Max

48 / 76

Verification of a counter
Properties to check

• p_load : If load is active, at the next clock cycle the output shall be the current
input

• p_hold : If load and enable are active, the counter shall keep its value

• p_incr : If load is inactive, enable is active and up_ndown is active, the counter
shall be incremented

• p_decr : If load is inactive, enable is active and up_ndown is inactive, the
counter shall be decremented

49 / 76

Verification of a counter
Assertions

// load operation

assert_load: assert property (@(posedge clk) disable iff (rst ==1)

(load ==1) |=> value == $past(load_value));

// maintain operation

assert_maintain: assert property (@(posedge clk) disable iff (rst ==1)

(load ==0) & (enable ==0) |=> value == $past(value));

// increment operation

assert_increment: assert property (@(posedge clk) disable iff (rst ==1)

(load ==0) & (enable ==1) & (up_ndown ==1) |=> value == ($past(value)+1)%256);

// decrement operation

assert_decrement: assert property (@(posedge clk) disable iff (rst ==1)

(load ==0) & (enable ==1) & (up_ndown ==0) |=> value == ($past(value) -1)%256);

50 / 76

Verification of a counter
Assertions

‘define ASSERT_PROP(p) assert property (@(posedge clk) disable iff (rst ==1) p);

// load operation

assert_load: ‘ASSERT_PROP((load ==1) |=> value == $past(load_value))

// maintain operation

assert_maintain: ‘ASSERT_PROP((load ==0) & (enable ==0) |=> value == $past(value))

// increment operation

assert_increment: ‘ASSERT_PROP((load ==0) & (enable ==1) & (up_ndown ==1) |=>

value == ($past(value)+1)%256)

// decrement operation

assert_decrement: ‘ASSERT_PROP((load ==0) & (enable ==1) & (up_ndown ==0) |=>

value == ($past(value) -1)%256)

51 / 76

Example of an error
Injected in the design

• Injected error : If value == 200, then decrement instead of increment

• Scenario : Load 200, then increment

52 / 76

Verification of a FIFO
DUV

• Simple FIFO

• Synchronous read/write

• Two outputs for the FIFO status
(empty/full) FIFO

full o

wr i

wr data i
N

clk i

rst i

rd data o
N

empty o

rd i

53 / 76

Verification of a FIFO
Testbench

1. Directed tests
• Checks what happens when the FIFO is empty
• Checks what happens when the FIFO is full

2. Random tests
• Random commands
• Coverage to be sure every relevant condition has been observed

• Simultaneous read/write

54 / 76

Verification of a FIFO
Formal proof

• Properties to verify
• P1. If the number of writes equals the number of reads, then empty_o shall be

active
• P2. If the difference between the number of writes and the number of reads equals

the FIFO size, then full_o shall be active
• P3. The nth data written shall be the nth to go out
• P4. full_o and empty_o shall never be active at the same time

55 / 76

Verification of a FIFO
Assumptions

// The following disables reads when the FIFO is empty

assume property (@(posedge clk_i) (!(rd_i & empty_o)));

// The following disables writes when the FIFO is full

assume property (@(posedge clk_i) (!(wr_i & full_o)));

56 / 76

Verification of a FIFO

• Naive assertion

assert_not_empty_after_write :

assert property (@(posedge clk_i) (

(wr_i) |=> !empty_o));

57 / 76

Verification of a FIFO
Useful counters

int wcnt = 0;

int rcnt = 0;

always @(posedge clk_i or posedge rst_i)

if (rst_i)

wcnt = 0;

else if (wr_i)

wcnt = (wcnt + 1);

always @(posedge clk_i or posedge rst_i)

if (rst_i)

rcnt = 0;

else if (rd_i)

rcnt = (rcnt + 1);

58 / 76

Verification of a FIFO

property p_full;

@(posedge clk_i)

(full_o == (wcnt == rcnt + FIFOSIZE));

endproperty

property p_empty;

@(posedge clk_i)

(empty_o == (wcnt == rcnt));

endproperty

property p_data_integrity;

int cnt;

logic[DATASIZE -1:0] data;

@(posedge clk_i)

(wr_i , cnt=wcnt , data=data_i) |=>

(([0:$] (rd_i & (rcnt==cnt))) |->

(data_o ==data));

endproperty

59 / 76

Verification of a FIFO
State explosion

assume property (@(posedge clk_i) (wcnt < 4* FIFOSIZE));

60 / 76

Errors found

• Signals initialized at declaration

signal mon_signal : std_logic := ’0’;

• Problems with delay of data at the output

61 / 76

Verification of a multi FIFO
DUV

• Multi FIFO (multi-channel)

• Synchronous read/write commands

• Two outputs for the FIFO status
(empty/full)

• A channel number to define which
FIFO to access

• Write on channel channel_wr_i
• Read on channel channel_rd_i

FIFOMulti
full o

wr i

wr data i
N

channel wr i
NBC

clk i

rst i

rd data o
N

channel rd i
NBC

empty o

rd i

62 / 76

Verification of a multi FIFO
Formal proof

• Quite similar to the simple FIFO
• Use of generate for channels assertions

63 / 76

Verification of a multi FIFO

generate

genvar channel_var;

for (channel_var = 0; channel_var < NBFIFOS; channel_var = channel_var + 1)

begin : channel

property p_full;

@(posedge clk_i)

(channel_wr_i == channel_var) |->

(full_o == (wcnt[channel_var] == rcnt[channel_var] + FIFO_DEPTH_G));

endproperty

assert_full : assert property (p_full);

end

endgenerate

64 / 76

Errors found

• Error if a read command and a write command occured on the same channel at
the same time

65 / 76

Calculator
DUV

• A module able to compute the
following function :

• F (a, b, c) = a+ a+ b − c
• Could be any kind of arithmetic

computation

• Different architectures :
• Datapath-control
• Pipelined

• A single testbench to validate different
architectures

Calculator

a i
n

b i
n

c i
n

valid i

ready o

result o
n

valid o

ready i

66 / 76

Verification of a calculator
Datapath

R 0D

R 2D

R 1D

R 3D

+

-

*

Su

Add

Mult
R 3

a
b
c

Add
Su

Mult
0

R 3

R 0
R 2
R 1 Result

a

b

c

67 / 76

Verification of a calculator
Formal proof

• Properties to verify
• P1. When a computation is launched, then after a certain time the result shall be

available at the output
• P2. The result of a computation shall correspond to the calculation (verification of

data)
• The nth result shall correspond to the nth input data

• P3. When no computation is under way, then ready_o shall be active

68 / 76

Property 1

property p_valid_eventually;

@(posedge clk_i)

(valid_i && ready_o)

|=>

##[0:100] (valid_o);

endproperty

69 / 76

2 counters

int wcnt = 0;

int rcnt = 0;

always @(posedge clk_i or posedge rst_i)

if (rst_i)

wcnt = 0;

else if (valid_i && ready_o)

wcnt = (wcnt + 1);

always @(posedge clk_i or posedge rst_i)

if (rst_i)

rcnt = 0;

else if (valid_o && ready_i)

rcnt = (rcnt + 1);

70 / 76

Property 2

property p_ready_once;

@(posedge clk_i)

(rcnt == wcnt) |-> (ready_o);

endproperty

71 / 76

Property 3

property p_data_integrity;

int cnt;

logic[DATASIZE -1:0] a;

logic[DATASIZE -1:0] b;

logic[DATASIZE -1:0] c;

@(posedge clk_i)

(valid_i && ready_o ,

cnt = wcnt ,

a = a_i ,

b = b_i ,

c = c_i

) |=>

((##[0:$] (valid_o && ready_i & (rcnt==cnt))) |->

(result_o == a + a + b - c));

endproperty

72 / 76

Some limitations
Issues with QuestaFormal

always_ff @(posedge clk , posedge rst) begin

if (rst == 1) begin

count <= 0;

internal_count <= 0;

end

else begin

internal_count <= internal_count + 1;

if (load == 1)

count <= load_value;

else begin

if (en == 1) begin

if (up_ndown == 1)

count <= count + 1;

else

count <= count - 1;

if (internal_count == 10000000)

count <= count -1;

end

end

end

end

73 / 76

Synthesis of properties

• Some properties can be synthesized
• For verification

• Embedded in an emulation

• For design
• Generates a design compliant with the properties

74 / 76

Synthesis of a design
Automata approach

• European project PROSYD (http://www.prosyd.org/), 2004-2006
• From PSL properties, build a Mealy machine that matches the properties

1. A two-player game played between a system and an environment
2. The game structure is a multi-graph that represents the input variables and the state

variables
• Each node represents a combination of input and state variables that are valid
• Each edge represents the transitions from a set of input and state variables to another

set of valid input and state variables.

3. If the environment wins, then the specification is unrealizable, and if the system
wins, they extract a BDD representing this system

4. In case the specification is realizable, the corresponding BDD is synthesized.

• Use cases : A generalized buffer and an AMBA bus arbiter

• Issues : Size of the design (and applicability)

75 / 76

http://www.prosyd.org/

Synthesis of a design
Modular approach

• Dominique Borrione and her team (Grenoble, France)
• Based on a library of monitors and generators

• Corresponding to PSL operators

• Monitors detect correct or wrong behavior

• Generators produce sequences

• Allows to interpret LTL-style and SERE-style assertions

• Way more efficient in terms of size

76 / 76

	Comet Camera
	Supplementary material

