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Assertion-Based Formal Verification

Quiz time!

● Who here has formally verified one of their designs before?
● Who has had formal verification done on their design by someone else?
● Who has used a formal tool before even though it wasn't their job?
● Who has a vague idea of what formal verification is?
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Background

● Traditionally, Assertion-Based Formal Verification is done on the finished RTL 
by a separate team of verification engineers

This talk is about a different use case for formal tools!

● Target audience: FPGA developers with no prior exposure to formal
○ Introduce some use cases where formal might add something to your toolkit
○ Try to show the process of using formal (you can look up the syntax later)

● Goal: develop faster!
○ examples for during development
○ don't need to be 100% sure of everything, this is not the verification stage
○ just some things to try out when stuck
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Tools used in this talk

● SBY (formerly SymbiYosys): Formal Property Checker, uses Yosys under the hood
○ Works on netlist representation, i.e. uses synthesis semantics
○ Cannot parse simulation-only constructs (e.g. testbenches, UVM), only the DUT
○ Command line oriented tool
○ Open source frontends:

■ Verilog-2005 frontend with a few SV(A) extensions
■ GHDL plugin for VHDL & PSL

○ Commercial frontend: Verific (SystemVerilog & VHDL)
● Language: SystemVerilog

○ This talk will mostly use examples with full SVA syntax (not compatible with open source frontend)
○ It's possible to express the same things with only the immediate assertions from open source 

frontend, by manually constructing the checker state machine (too much text for slides)
○ Can also do the same in VHDL+PSL with GHDL plugin: stay for the next talk!
○ Code for the examples used in this talk is available here: 

https://github.com/nakengelhardt/fdf24-examples 
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What is Assertion-Based Formal Verification?

The basic keywords/statements:

● assume
○ for preconditions external to the DUT (assuming behavior of input signals)
○ this is also evaluated in simulation to make sure it's not violated (same as assert, just different message)

● restrict
○ same as assume in FV, but makes it clear to any reader that this is only limiting the states you explore
○ use this to exclude behaviors on internal signals/state
○ this is not checked in simulation

● assert
○ express the guarantees that bad things shouldn't happen
○ produces a counterexample trace if the bad thing can in fact happen
○ also evaluated in simulation

● cover
○ under the hood, same as asserting the inverse
○ produces an example trace of a desired behavior happening

5



What is Assertion-Based Formal Verification?

Simple example:

module dut(input a, input b, output o);

assign o = a ^ b;

endmodule

If b is low, o will be the same as a.

● assume(b == 1'b0);
● assert(o == a);
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Where to insert the properties?

Directly in DUT:

module dut(input a, 
input b, output o);

assign o = a ^ b;

always_comb begin

    assume(b == 1'b0);

    assert(o == a);

end

endmodule

In a TB:

module tb();

wire a, b, o;

dut dut_i(.*);

always_comb begin

    assume(b == 1'b0);

    assert(o == a);

end

endmodule

Using bind:

module dut_check(input 
a, input b, input o);

always_comb begin

    assume(b == 
1'b0);

    assert(o == a);

end

endmodule

bind dut dut_check 
dut_check_i(.*);
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Configuring SBY

module dut(
input a, b, 
output o
);

assign o = a ^ b;

always_comb begin

    assume(b == 1'b0);

    assert(o == a);

end

endmodule

[options]
mode bmc
depth 1

[engines]
smtbmc yices

[script]
read -sv dut.sv
prep -top dut

[files]
dut.sv

sby -f dut.sby
SBY 15:53:42 [dut] engine_0: smtbmc
SBY 15:53:42 [dut] base: starting process "cd dut/src; yosys -ql 
../model/design.log ../model/design.ys"
SBY 15:53:42 [dut] base: finished (returncode=0)
SBY 15:53:42 [dut] prep: starting process "cd dut/model; yosys -ql design_prep.log 
design_prep.ys"
SBY 15:53:42 [dut] prep: finished (returncode=0)
SBY 15:53:42 [dut] smt2: starting process "cd dut/model; yosys -ql design_smt2.log 
design_smt2.ys"
SBY 15:53:42 [dut] smt2: finished (returncode=0)
SBY 15:53:42 [dut] engine_0: starting process "cd dut; yosys-smtbmc --presat 
--unroll --noprogress -t 1  --append 0 --dump-vcd engine_0/trace.vcd --dump-yw 
engine_0/trace.yw --dump-vlogtb engine_0/trace_tb.v --dump-smtc engine_0/trace.smtc 
model/design_smt2.smt2"
SBY 15:53:42 [dut] engine_0: ##   0:00:00  Solver: yices
SBY 15:53:42 [dut] engine_0: ##   0:00:00  Checking assumptions in step 0..
SBY 15:53:42 [dut] engine_0: ##   0:00:00  Checking assertions in step 0..
SBY 15:53:42 [dut] engine_0: ##   0:00:00  Status: passed
SBY 15:53:42 [dut] engine_0: finished (returncode=0)
SBY 15:53:42 [dut] engine_0: Status returned by engine: pass
SBY 15:53:42 [dut] summary: Elapsed clock time [H:MM:SS (secs)]: 0:00:00 (0)
SBY 15:53:42 [dut] summary: Elapsed process time [H:MM:SS (secs)]: 0:00:00 (0)
SBY 15:53:42 [dut] summary: engine_0 (smtbmc) returned pass
SBY 15:53:42 [dut] summary: engine_0 did not produce any traces
SBY 15:53:42 [dut] DONE (PASS, rc=0)
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Under the hood

The circuit, the assumptions/restrictions, and the 
assertions/covers are all transformed into equations 
expressing relations between the signal values.

Variables: at0 = value of signal a in timestep t0 etc

Base model: Goal ("bad") state model:

This system of equations is handed to a solver. The solver 
either returns a set of values fulfilling all the equations (a 
counterexample => VCD) or "unsatisfiable" (no such 
values exist, i.e. the assertion holds => PASS)

module dut(
  input a, b,
  output o
);

  assign o = a ^ b;

  always_comb begin

    assume(b == 1'b0);

    assert(o == a);

  end

endmodule

ot0 = at0 xor bt0

bt0 = 0

ot0 ≠ at0

9



Implications

● The solver is very good at finding input combinations you'd never have 
thought of, because signals have meanings in your mind

● But without good assumptions, the results are mostly useless
○ if any initial value is unconstrained, it will just start in bad state
○ if an invalid input is allowed, GIGO principle applies

● This is where you do have to put in some work
○ but doing it progressively as you develop the RTL is less burdensome than someone who 

didn't write the code doing it after the fact
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What can we do with this functionality?

● using cover statements to create testbenches
● using properties to confirm invariants that the design relies on
● validating subsystem interactions
● bug hunting with assertions
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Create testbench stimulus with cover
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Create testbench stimulus with cover

● If a design has deep state space

● or some difficult-to-reach edge cases

● Tell the tool the end goal

● It can figure out how to get there
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Example design: game logic

● Navigate a map without falling into lava, 
drowning in water, or choking in gas

● inputs btn_left, btn_right, btn_up, 
btn_down to move positions

● inputs btn_A (swim) and btn_B (hold 
breath) to survive water/gas tiles

● input btn_start to start the game
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Example design: game logic

● DUT: FSM for game state
○ keeps track of menu/in-game/won/lost screen
○ also updates player position
○ has two submodules

● Submodule position_checker
○ combinatorially derives position_ok

from next position + buttons A/B
● Submodule debug_module

○ allows changing position
for debugging
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Generating testbench stimuli

● Generate the inputs to navigate the whole map to win the game

won: cover property (@(posedge clk) game_state == GAME_WON);

● There are some known constraints

assume property (@(posedge clk)
(btn_up + btn_down + btn_right + btn_left < 2));
assume property (@(posedge clk) (btn_A + btn_B < 2));

● Let's run this:
[fsm] summary: engine_0 (smtbmc bitwuzla) returned pass
[fsm] summary: cover trace: fsm/engine_0/trace0.vcd
[fsm] summary:   reached cover statement game_fsm.won at 
fsm.sv:123.10-123.65 in step 1
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Generating testbench stimuli

● Most registers in the design 
are uninitialized

● The solver simply decides to 
start up the design in the 
GAME_WON state
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Generating testbench stimuli

● Let's add some assumptions

initial assume (reset);

● Note that we don't constrain reset to stay low past the first cycle, the solver 
can make use of repeat reset if it finds it useful

○ in this example it doesn't happen

● Let's run this again:

[fsm] summary: engine_0 (smtbmc bitwuzla) returned pass
[fsm] summary: cover trace: fsm/engine_0/trace0.vcd
[fsm] summary:   reached cover statement game_fsm.won at 
fsm.sv:123.10-123.65 in step 15
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● The solver finds the key combination to activate the debug unit
● The solver finds that it can be activated during pre-game screen, with the final 

btn_start both starting the game and activating the position update
● But this is still not actually what we were looking for…
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Generating testbench stimuli

● This time, we want to exclude an intended functional state of the design

restrict property (@(posedge clk) !debug_active);

● Run again:

[fsm] summary: engine_0 (smtbmc bitwuzla) returned pass
[fsm] summary: cover trace: fsm/engine_0/trace0.vcd
[fsm] summary:   reached cover statement game_fsm.won at 
fsm.sv:123.10-123.65 in step 36
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Generating testbench stimuli

● This time we get the actual input sequence for reaching the winning position
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Generating testbench stimuli

● SBY also generates a simulation testbench file
○ but the initialization section often needs adjustment

always @(posedge clock) begin
// state 1
if (cycle == 0) begin

  PI_btn_start <= 1'b1;
  PI_reset <= 1'b0;
  PI_btn_left <= 1'b0;
  PI_btn_B <= 1'b0;
  PI_btn_A <= 1'b0;
  PI_btn_right <= 1'b0;
  PI_btn_down <= 1'b0;
  PI_btn_up <= 1'b0;

end

// state 2
if (cycle == 1) begin

  PI_btn_start <= 1'b0;
  PI_reset <= 1'b0;
  PI_btn_left <= 1'b0;
  PI_btn_B <= 1'b0;
  PI_btn_A <= 1'b0;
  PI_btn_right <= 1'b1;
  PI_btn_down <= 1'b0;
  PI_btn_up <= 1'b0;

end
...
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Confirm Invariants
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Confirm Invariants

● You think you know something that should be true about the design
● You want to rely on this to make your implementation simpler
● Double-check that it's actually true!

○ (This is where it's probably necessary to be a bit more rigorous)
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Confirm Invariants

● Example: ML accelerator compute unit with 10-stage pipeline
● Three stages need to access memory, but the module only has one port
● Could write an arbiter to be safe, but it would be more efficient to just introduce a 

stall sometimes to ensure they never conflict
● Did we get it right?

memlock: assert property(@(posedge clock) disable iff(reset) 
(mem_rd0_en + mem_rd1_en + |mem_wr_en) < 2);

● no assumptions beyond initial reset

[compute_memlock] summary: engine_0 (abc pdr) returned PASS
[compute_memlock] summary: engine_0 did not produce any traces
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Confirm your formal setup

● PASS! Hooray! But… are we sure?
● Common mistake in formal: accidentally overconstrain the design, it's not 

possible to for the solver to even reach any interesting state without violating 
assumptions

● Try to confirm the check is not vacuous
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Confirm your formal setup

● One option: cover the "good" state of the thing the assertion is about

cover_memlock: cover property(@(posedge clock) disable 
iff(reset) (mem_rd0_en + mem_rd1_en + |mem_wr_en) == 1);

[compute_memlock] summary: engine_0 (smtbmc yices) returned pass
[compute_memlock] summary: cover trace: 
compute_memlock/engine_0/trace0.vcd
[compute_memlock] summary:   reached cover statement 
marlann_compute.cover_memlock at compute.v:188.17-188.113 in 
step 4
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Confirm your formal setup

● Another option: let's try breaking the design…

assign s1_stall = |(memlock_res & memlock_mask) || 
(maxlock_b && maxlock_a_q);

[compute_memlock] summary: engine_0 (abc pdr) returned FAIL
[compute_memlock] summary: counterexample trace: 
compute_memlock/engine_0/trace.vcd
[compute_memlock] summary:   failed assertion 
marlann_compute.memlock at compute.v:186.11-186.107 in step 8

● Can be fairly certain the formal property does what we want it to do
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Validating subsystem interactions
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Validating subsystem interactions

● If you've been adding assumes and asserts during the last two steps
● And so has your colleague on the other end of a shared interface
● Use each other's properties!
● Convert your colleagues assumptions into assertions and check that your 

design fulfils them
● Convert all assumptions on internally-generated signals into assertions and 

check them on the integrated design
● For an advanced example, we have a set of properties to verify AXI4 protocol 

compliance: https://yosyshq.readthedocs.io/projects/ap320/en/latest/ 
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Bug hunting with assertions
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Bug hunting with assertions

● Have observed some undesired behavior in testing on FPGA
● Can't reproduce in simulation

○ Don't know correct inputs?
○ Known set of inputs too long for simulation?

● Try directly to assert or cover the observed behavior
○ (essentially back to generating a tb)
○ This works if the problem is with an input edge case that isn't deep but just requires a very 

precisely timed sequence of inputs that almost never happens naturally
● Can't reach within a few cycles of initial state? Use sim trace as starting point

○ Especially if system has a bringup procedure
○ Can re-use saved end-of-sim state for many FV runs as long as RTL is unchanged

● Have partial information from ILA? Use SCY to trace in multiple hops
○ May fail if non-recorded state needs to have a specific value for end state to be reachable 
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Try it out!
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Get the Tools

● Download nightly builds of the OSS CAD Suite
○ https://github.com/YosysHQ/oss-cad-suite-build/releases/latest 
○ Includes Yosys, SBY, MCY, all dependencies, supported solvers, GHDL plugin (linux only)
○ Also nextpnr, Amaranth, cocotb, …

● Documentation: https://yosyshq.readthedocs.io/en/latest/ 

● Ask for an evaluation license to the commercial Tabby CAD Suite
○ Email contact@yosyshq.com or fill the contact form https://www.yosyshq.com/contact 
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Q&A
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SBY – formal property checking with Yosys

● Frontend for formal flows
○ Allows easy use of SystemVerilog assume(), assert(), cover()  statements

■ Complex SVA properties/sequences are supported with the commercial version
○ SBY has modes for bounded and unbounded proofs

■ Support for different unbounded proof methods (k-induction, pdr/ic3)

● Automates the steps for running formal proofs with Yosys
○ Yosys translation of design to formal problem formats (SMT2, BTOR2, Aiger…)
○ Running solvers to find a set of signal values responding to the problem (or not)

■ Allows using many solvers being developed by researchers
○ Using Yosys to translate the set of variable assignments back into a VCD trace

● Myriad of different input/output formats “under the hood”
○ SBY provides a uniform interface for a wide range of solvers, hiding those differences.

● Example projects:
○ riscv-formal: formally verify ISA compliance (rv32imc/rv64imc) https://github.com/YosysHQ/riscv-formal/ 
○ AXI4 formal verification IP (requires SVA support) https://github.com/YosysHQ-GmbH/SVA-AXI4-FVIP 
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What is Assertion-Based Formal Verification?

Available modes in SBY:

● Bounded Model Check (mode bmc):
○ Checks whether a state violating any assertion can be reached in N cycles from initial state
○ bound N = depth config option

● Cover (mode cover)
○ For each cover property, tries to find a trace of length N cycles or less from initial state to a state 

fulfilling the cover condition (and then checks that the found trace doesn't violate any assertions)
○ bound N = depth config option

● K-induction (mode prove + engine smtbmc):
○ Checks whether the set of assumptions + assertions is inductive
○ annoying for anything non-trivial

● IC3/PDR (mode prove + engine abc pdr)
○ Checks whether all assertions hold indefinitely
○ If you use this, set a timeout because it may be impossible to tell if it's making progress
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Directly in DUT
module dut(input a, input b, output o);

assign o = a ^ b;
always_comb begin

    assume(b == 1'b0);
    assert(o == a);

end
endmodule

Advantages:
● Least effort to set up
● Access to all internal signals
● Works even for modules deep in 

hierarchy with multiple instances
● Properties also get checked in sim

Disadvantages:
● Not easy to enable/disable

○ can use `ifdef FORMAL
● Could get lost within the design 

logic
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In a testbench module:
module tb();

wire a, b, o;
dut dut_i(.*);

always_comb begin
    assume(b == 1'b0);
    assert(o == a);

end
endmodule

Advantages:
● Familiar format
● Neatly separated in its own file and 

module
● Works for mixed-language design

Disadvantages:
● Can't access internal signals
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In a separate module injected with bind

module dut_check(input a, input b, input o);
always_comb begin
    assume(b == 1'b0);
    assert(o == a);
end

endmodule
bind dut dut_check dut_check_i(.*);

Advantages:
● Neatly separated in its own file
● Can access internal signals
● Works even for modules deep in 

hierarchy with multiple instances
● Works for mixed-language design

Disadvantages:
● Not supported in OSS version

○ Can still instantiate checker in DUT 
under `ifdef FORMAL  guards

● Syntax can be a bit complex
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Validating subsystem interactions

● On the game FSM there were 3 assumptions:

initial assume (reset);

● This one is presumably external (reset comes from outside the chip)

assume property (@(posedge clk) 
(btn_up + btn_down + btn_right + btn_left < 2));

assume property (@(posedge clk) (btn_A + btn_B < 2));

● These two are about signals that come from another module (button handler)
● On button handler module, assert these properties!
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Validating subsystem interactions

● Can of course just send those properties to your colleague via email
● But to track any changes in the interface, would be best to have single source
● Keep the properties in a separate file
● Switch between assume and assert as needed
● Taking up the game FSM example again, there was the interface with the 

module in charge of displaying graphics:

input logic show_pre_game_screen,
input logic show_won_game_screen,
input logic show_lost_game_screen,
input logic [MAP_IDX_SIZE_X-1:0] player_pos_x,
input logic [MAP_IDX_SIZE_Y-1:0] player_pos_y
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Validating subsystem interactions

● Create a separate checker module for each interface:
property one_screen;
    @(posedge clk) (show_pre_game_screen + 
show_won_game_screen + show_lost_game_screen < 2);
endproperty

generate if (ASSUME_MODE) begin
        assume property (one_screen);
end else begin
        p_one_screen: assert property (one_screen);
end
endgenerate
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Validating subsystem interactions - unit test

● Graphics module would use it in assume mode
● In FSM check we use it in assert mode:

[file bind_fsm_graphics_interface_properties.sv]

bind game_fsm fsm_graphics_interface_properties 
#(.ASSUME_MODE(0)) fsm_graphics_interface_properties_i(.*);

● Prove the above under condition of assuming the input behavior:

[file bind_fsm_btn_interface_properties.sv]

bind game_fsm fsm_btn_interface_properties 
#(.ASSUME_MODE(1)) fsm_btn_interface_properties_i(.*);
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Validating subsystem interactions - integration test

● Top module instantiating FSM and other modules it communicates with
● Use all properties in assert mode:

[file bind_fsm_graphics_interface_properties.sv]

bind integration_test_debounce_fsm 
fsm_graphics_interface_properties #(.ASSUME_MODE(0)) 
fsm_graphics_interface_properties_i(.*);

[file bind_fsm_btn_interface_properties.sv]

bind integration_test_debounce_fsm 
fsm_btn_interface_properties #(.ASSUME_MODE(0)) 
fsm_btn_interface_properties_i(.*);
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Validating subsystem interactions

● If you keep the properties compatible with simulation they can be useful there 
too (for your colleagues that don't use formal yet)

● This is a simple example of assume-guarantee technique
●
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Co-simulation for initial state

● Not-very-clever example: Load map data via write port added to game_fsm module

● Run yosys sim_script.ys for Yosys co-simulation from VCD first
○ Yosys sim command is not a fast simulator, this will take longer than it took to generate the VCD

read -formal game_state.vh fsm.sv position_checker.sv 
fsm_btn_interface_properties.sv bind_fsm_btn_interface_properties.sv 
bind_global_assumes.sv bind_cover_win_check.sv
prep -top game_fsm
sim -r fsm_tb.vcd -w -scope fsm_tb.fsm_inst
write_rtlil fsm_post_sim.il

● Then instead of reading the design, just load the saved checkpoint in SBY [script] 
section:

read_rtlil fsm_post_sim.il
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Co-simulation for initial state

● In the end, the trace looks just like before
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SCY: Generate long traces with intermediate cover states

No time for an example…

Idea of SCY:

● Multiple sets of cover properties to be reached in sequence
● Use VCD from first cover task as starting point for second task
● Stitched together into a longer trace than would be tractable for a single cover 

task
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