
Hog: handling HDL repositories on git
N. Aranzabal (ESRF, Grenoble) on behalf of the Hog group

13 June 2024 - 1st FPGA Developers Forum (FDF)

The European Synchrotron



Hog: handling HDL 
repositories on git

● Facilitates HDL projects development 
among multiple collaborators

● A set of TCL scripts (<1.2 MB) plus a 
methodology

● Integrates with HDL IDEs to tackle 
advanced Git features

● “Zero effort” strategy to maintain HDL 
projects in Git or even to develop 
them locally

2



N. Aranzabal (ESRF) - 13 June 2024 - 1st FPGA Developers Forum

WHAT IS HOG?

GIT SUBMODULE
Update when you want. 
Different versions for 

different projects

PLACE & ROUTE 
REPRODUCIBILITY
Absolute control of 

HDL files, constraints 
and IDE settings

TCL/SHELL
No extra requirements 
only your chosen IDE 

(Vivado, Quartus, 
Libero, ISE)

BINARY TRACEABILITY
Git SHA and version ID 

embedded into 
firmware registers

CONTINUOUS INTEGRATION
Automatic firmware 

validation and verification, 
plus tagging and releasing 

3



What do you need to 
work with Hog

A PC

4

Git

The IDE of your choice 



N. Aranzabal (ESRF) - 13 June 2024 - 1st FPGA Developers Forum

USING HOG: A PRACTICAL POINT OF VIEW

5

1) CREATE A NEW 
REPOSITORY

3) COPY HOG 
TEMPLATE FILES

4) ADD YOUR 
SOURCE CODE

2) ADD HOG AS 
SUBMODULE

5) CONFIGURE 
HOG

6) CREATE 
PROJECT

COMPILE
PROJECT: 
GUI, CLI, 
GIT CI/CD



N. Aranzabal (ESRF) - 13 June 2024 - 1st FPGA Developers Forum

HDL files Doxygen
(optional)

Hog
(submodule)

Top

<Project 1>

List files

lib1.src

lib2.src

xml.lst

lib1.sim

xdc.con

hog.conf

Plain text files, containing 
list of files to be added to 
the project. Different list 
files for different file sets 
(sources, simulation, 
constraints, external files)

Hog projects dependencies 
and configuration. Each project 

subfolder corresponds to a 
single design and contains the 

necessary files to create the 
project

LIST FILESTOP FOLDER

OPPORTUNITIES THREATS

Project configuration: FPGA 
device, synthesis and 

implementation strategies…
Simulation configuration: 

compilation strategy, 
syntax, pass string…

HDL SOURCES

HDL sources can be stored 
anywhere in the repository

6

HOG-HANDLED REPOSITORY

HOG & SIM CONF

sim.conf

Configuration 

file containing 

Simulator

properties

Configuration 

file containing 

IDE properties

IPbus xml list

(optional)

Simulation list 

file

Constraints list 

file

Library list files

containing 

HDL, IP, BD 

<Project 2> <Project 3>



N. Aranzabal (ESRF) - 13 June 2024 - 1st FPGA Developers Forum

LIST FILES

7

A list file contains a list of the files to be included in a project in text format

● List file extension defines the type of content
○ *.src for source files (HDL, IP, block design)
○ *.sim for simulation files
○ *.con for constraint files
○ *.ext for external proprietary libraries 

● List files are handled recursively: a list file can include another list file

● Hog will create a VHDL library for each list file
○ E.g. if you create a file called lib1.src and place it into Top/project1/list/, when 

you create project1, the files listed in lib1.src will be included in Vivado in a 
library called lib1

● If not interested in using libraries, developers can create just one list file



N. Aranzabal (ESRF) - 13 June 2024 - 1st FPGA Developers Forum

AN EXAMPLE OF SOURCES AND LIBRARIES IN VIVADO

LibrariesTop directory file tree Design & Simulation sources

8

IP & BD 
sources



N. Aranzabal (ESRF) - 13 June 2024 - 1st FPGA Developers Forum

HOG.CONF EXAMPLE

9

IDE to use

PROJECT PARAMETERS

HOG PARAMETERS



N. Aranzabal (ESRF) - 13 June 2024 - 1st FPGA Developers Forum

10

Embedded scripts as part of Hog workflow:

1) Pre-synthesis
○ Check repository status (Critical Warning if not clean)
○ Calculate versions & SHAs and feed them as generics
○ Produce version.txt containing all versions & SHAs
○ Checks YML file (optional)
○ Checks IPbus address maps (optional)
○ Generate and copy IPbus XMLs (optional)

Pre-synthesis Post-
implementation Pre-bitstream Post-bitstream

version.txt

EMBEDDED SCRIPTS



N. Aranzabal (ESRF) - 13 June 2024 - 1st FPGA Developers Forum

EMBEDDED SCRIPTS

Hog uses commit 
time & date to 

guarantee 
reproducibility

PRE-SYNTHESIS OUTPUT
Hog evaluates at pre-synthesis 
stage date, time, SHA and version 
for all project components:
Repository, Constraints, Top, Hog 
submodules, libraries

VERSION AND SHA REGISTERS
The versions and SHAs are parsed 
to the top file in the project as 
generic parameters, and can be 
used by the developer.
Version registers are formatted in 
hex as MM mm pppp

11



N. Aranzabal (ESRF) - 13 June 2024 - 1st FPGA Developers Forum

EMBEDDED SCRIPTS

12

2) Post-implementation
○ Copy all reports, log files and version.txt file
○ Copy a timing recap .txt file, containing TNS and WNS (CI only)
■ This file name is timing_ok.txt if there is no violation and 

timing_error.txt if timing requirements are not met

3) Pre-bitstream
○ E.g. to embed git SHA in binary file (in case the file gets renamed)

4) Post-bitstream
○ Copy .bit and .bin files to a bin folder and rename them with git describe
○ Copy IPbus .xml files (replacing place holders with git SHA and version)

Custom TCL scripts can be added at any stage of the workflow in Top/<MY_PROJECT>:
pre-creation.tcl, post-creation.tcl, pre-synthesis.tcl, post-synthesis.tcl, 
pre-implementation, post-implementation, pre-bitstream.tcl, post-bitstream.tcl



N. Aranzabal (ESRF) - 13 June 2024 - 1st FPGA Developers Forum

BINARY REPRODUCIBILITY

13

Two Vivado binary files produced with Linux on two different machines:

● .bin files are exactly the same
○ If you run diff, you get nothing

● .bit files differ if you run diff
○ The difference is only a timestamp in the header of the file, the rest is exactly the 

same:



N. Aranzabal (ESRF) - 13 June 2024 - 1st FPGA Developers Forum

AVOID DUPLICATING CODE WITH HOG

14

Top

my_fpga.1 my_fpga.2 my_fpga.3

top_my_fpga.vhd

FLAVOUR EXAMPLE
top_my_fpga.vhd will be used as a 
top module for the three projects 
(my_fpga.1, my_fpga.2, my_fpga.3). 
The FLAVOUR number will be 
parsed to the top module and can 
be used to differentiate the 
designs

MULTIPLE DESIGNS SHARING THE SAME TOP HDL FILE
E.g. Different FPGA running the same design

RECURSIVE LIST FILES
List file can include other list files, which can be 
then included in multiple projects

HOG FLAVOUR
Integer number parsed as a generic to the top HDL file.
Flavour is extracted from project folder name, if it ends 
with a numeric extension (e.g. Top/my_fpga.1)

USER GENERICS
Users can define generics in hog.conf file to be 
parsed to the project top module. This can be used 
in conditional statements in the code, to 
differentiate between projects 



N. Aranzabal (ESRF) - 13 June 2024 - 1st FPGA Developers Forum

CREATE PROJECT
Use the Do script with 

CREATE option to create 
Vivado project

USE THE SHELL 
SCRIPTS 

Run Hog workflow in 
batch mode

USE THE GUI
Developing can be 
done using Vivado

GUI in project mode

INTEGRATED HOG SCRIPTS
Running at pre-synthesis, pre-implementation, post-
implementation and post-bitstream stages. Embed git 
SHA and version, and create reports

ADD NEW FILES / CHANGE SETTINGS
New files shall be added to list files and settings to the 
hog.conf. Users can do this manually and re-create the 
project, or update the Hog configuration files using the 
dedicated Hog buttons

VERSIONING
At pre-synthesis stage, Hog evaluates the design version 
from the git SHA in the vM.m.p format. Version values are 
calculated for each library in the project

COMMIT BEFORE RUNNING!
Uncommitted changes will generate a Critical Warning, 
and Hog will declare the repository as dirty, setting the 
design version to 0

USING HOG WITH VIVADO

15



N. Aranzabal (ESRF) - 13 June 2024 - 1st FPGA Developers Forum

A SIMULATION EXAMPLE: VIVADO, UVVM AND QUESTASIM

16

1. Add UVVM as a submodule (e.g. in <my_repository>/sim/uvvm) 

2. Create simulation list files with UVVM libraries
○ E.g. create Top/<my_project>/list/uvvm_util.sim and add the paths to the files in uvvm/uvvm_util/src

3. Create main simulation list file and simulation configuration file

Top/<my_project>/list/<my_simulation>.sim

Top/<my_project>/sim.conf

Simulation libraries

Simulator tool

Simulation sources

Hog parameters

Simulation parameters



N. Aranzabal (ESRF) - 13 June 2024 - 1st FPGA Developers Forum

SETTING UP HOG CI/CD

17

STATIC GITLAB CI/CD
Include the hog.yml in your .gitlab-ci.yml file.
Write few lines for each project, different
CI/CD jobs for simulation and P&R

DYNAMIC GITLAB CI/CD
Include the hog-dynamic.yml in
your .gitlab-ci.yml. The CI/CD
configuration is created
dynamically, and the merge-request
pipeline is executed in a child-
pipeline

GITHUB ACTIONS
Include the Hog-pull.yml in your
.github/workflow YAML configuration, and
declare the projects to build and required
configuration



N. Aranzabal (ESRF) - 13 June 2024 - 1st FPGA Developers Forum

HOG CI/CD WORKFLOW

18

1. OPEN A MERGE/PULL REQUEST (MR/PR)
Developments are done on short-lived feature 

branches. To push changes to main branch, open a 
merge/pull request on GitLab/GitHub repository 

web interface

2. MERGE/PULL REQUEST PIPELINE
Runs on private machines with the installed IDE. 
Runs the P&R workflow and the simulations for 
the specified projects3. MERGE/PULL REQUEST IS READY

The repository maintainer reviews the 
changes and, if the MR/PR request pipeline 
was successful, he/she merges the feature 

branch into the release branch 4. TAG PIPELINE
Runs on shared machines with docker, and 
automatically tags the repository. Special 
keyword can be used in the MR description or 
branch name to increase automatically the 
minor or major version numbers

5. RELEASE PIPELINE
Creates automatically the release for the just-

produced tag, including version, resources and 
timing tables, generated binary files, and a 

changelog. Optionally, also creates a badge on the 
repository home page



N. Aranzabal (ESRF) - 13 June 2024 - 1st FPGA Developers Forum

GITLAB RELEASE EXAMPLE

19

Release binaries 
and reports 
automatically stored 
in disk (optional)



N. Aranzabal (ESRF) - 13 June 2024 - 1st FPGA Developers Forum

Thanks to

20

Detector & Electronics group
• Support, development and production in the 

area of X-ray detectors and electronics systems 
for data acquisition, control and 
instrumentation

FPGA development methodology for new 
projects
• Moving from SVN to GitLab
• Continue with AMD as FPGA vendor
• ZYNQ SoC device (get rid of external processors) 
• Enclustra SoM for low and mid-end projects
• AMD Versal for high-end projects
• Hog to handle HDL repositories

HOG AT THE EUROPEAN SYNCHROTRON (ESRF) 

844 m of circumference
43 beamlines

Booster
6 GeV

Storage ring
Up to 100 KeV
X-rays

Linac
200 MeV

RF system 
at 352 MHz



N. Aranzabal (ESRF) - 13 June 2024 - 1st FPGA Developers Forum

HOG AT THE EUROPEAN SYNCHROTRON (ESRF) 

21

Several projects already ramping up with Hog
• Collaborations among other synchrotrons and institutes
• Vivado projects with IP (.xci) and block design (.bd)
• Most projects in VHDL, but also Verilog or System Verilog
• Planning to handle projects using HLS
• UVVM and QuestaSim for simulation, but collaborators might use 

different tools
• Hog-CI with Docker running in high performance servers

SMARTPIX (detector) SPHIRD (detector)

GASP (General-purpose 
Analog Signal Platform)

CITY (timing)

sCMOS camera (detector)

PEPU (Positioning Encoder 
Processing Unit)



Summary and 
Conclusions

Hog is available at gitlab.com/hog-cern/hog

● First commit in November 2017
● Released twice a year under Apache 2 license
● Latest release Hog2024.1, released in February
● Currently 7 contributors
● Experimental features available in the develop branch 
● Used by several academic and industrial projects, 

including: ATLAS, CMS Phase-I and Phase-II upgrades, 
ESRF, GAPS, FOOT, NASDAQ, NOKIA

Documentation: hog.readthedocs.io
Support: hog-group@cern.ch
Mailing list: hog-users@cern.ch

Hog Tutorial at CERN (YouTube link)

Do you want to try it?

> git clone --recursive 
https://gitlab.cern.ch/bham-dune/zcu102.git

> cd zcu102
> ./Hog/Do CREATE fmc0
> vivado ./Projects/fmc0/fmc0.xpr

22

Do you
like git, HDL and Tcl?

Join us!

https://gitlab.com/hog-cern/hog
https://hog.readthedocs.io/en/latest/
mailto:hog-group@cern.ch
mailto:hog-users@cern.ch
https://www.youtube.com/watch?v=dDcPoeEGVdQ
https://gitlab.cern.ch/bham-dune/zcu102.git


Thank you!
N. Aranzabal (ESRF, Grenoble) on behalf of the Hog group

13 June 2024 - 1st FPGA Developers Forum (FDF)

The European Synchrotron



N. Aranzabal (ESRF) - 13 June 2024 - 1st FPGA Developers Forum

CUSTOMISING HOG CI

24

Hog CI will work with default configuration, but can be 
customized for each project

● You can add custom jobs that run before and after Hog jobs

● Configuration via variables from GitLab/GitHub web interface

● Additional optional features include:
○ Automatic GitLab/GitHub releases
○ Archive releases to EOS website or custom paths
○ Automatic changelog parsed from git commit messages 

(use FEATURE: keyword)
○ Automatic syntax check before running synthesis
○ Run CI only for projects that were modified wrt last official 

version



N. Aranzabal (ESRF) - 13 June 2024 - 1st FPGA Developers Forum

CREATE PROJECT
Use the Do script with 

CREATE option to create 
Quartus project

USE THE SHELL 
SCRIPTS 

Run Hog workflow in 
batch mode

USE THE GUI
Developing can be 
done using Quartus 
GUI in project mode

INTEGRATED HOG SCRIPTS
Running at pre-synthesis, pre-implementation, post-
implementation and post-bitstream stages. Embed git 
SHA and version, and create reports

! ADD NEW FILES / CHANGE SETTINGS !
New files shall be added to list files and settings to the 
hog.conf. For Quartus this process is not automatised

! VERSIONING !
At pre-flow stage, Hog evaluates the design version from 
the git SHA in the vM.m.p format. Version values are 
calculated for each library in the project

COMMIT BEFORE RUNNING!
Uncommitted changes will generate a Critical Warning, 
and Hog will declare the repository as dirty, setting the 
design version to 0

USING HOG WITH QUARTUS

25


