Gravitational production of dark particles: quantum interference fringes

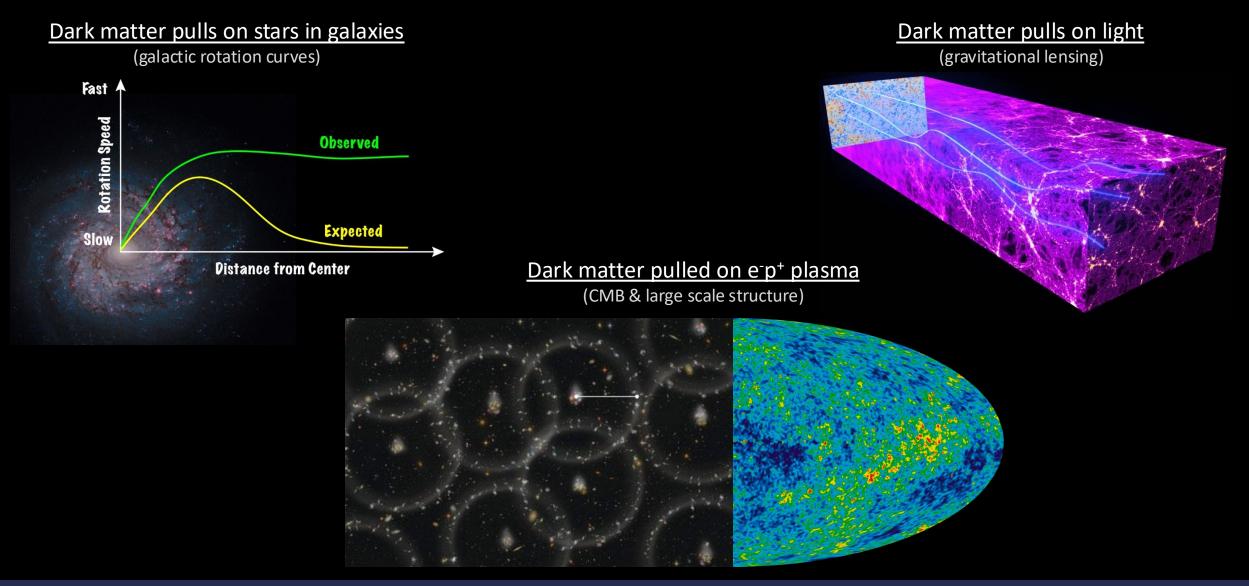
Andrew Long Rice University @ TH Institute CERN Sep 10, 2024

[based on Chung, Kolb, AL (1812.00211) and Basso, Chung, Kolb, AL (2209.01713)]

Image credit: Chris Stabb

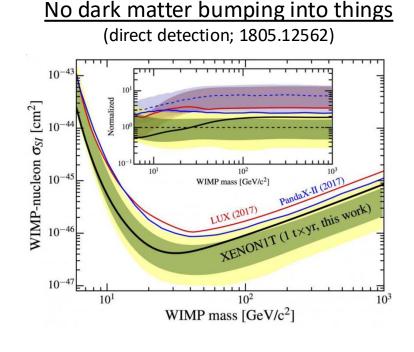
motivation making dark matter from gravity

dark matter pulls on things



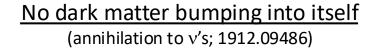
Gravitational production of dark particles

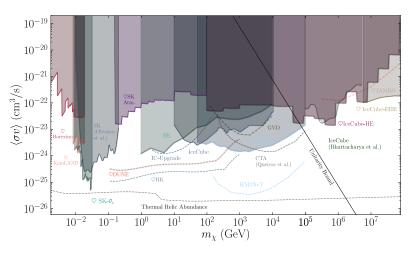
no evidence (yet) of dark matter bumping into things



No dark matter decaying into things (X-ray emission; 1908.09037)

6 7 8 910





(notwithstanding hints of new physics, there's no overwhelming evidence)

20

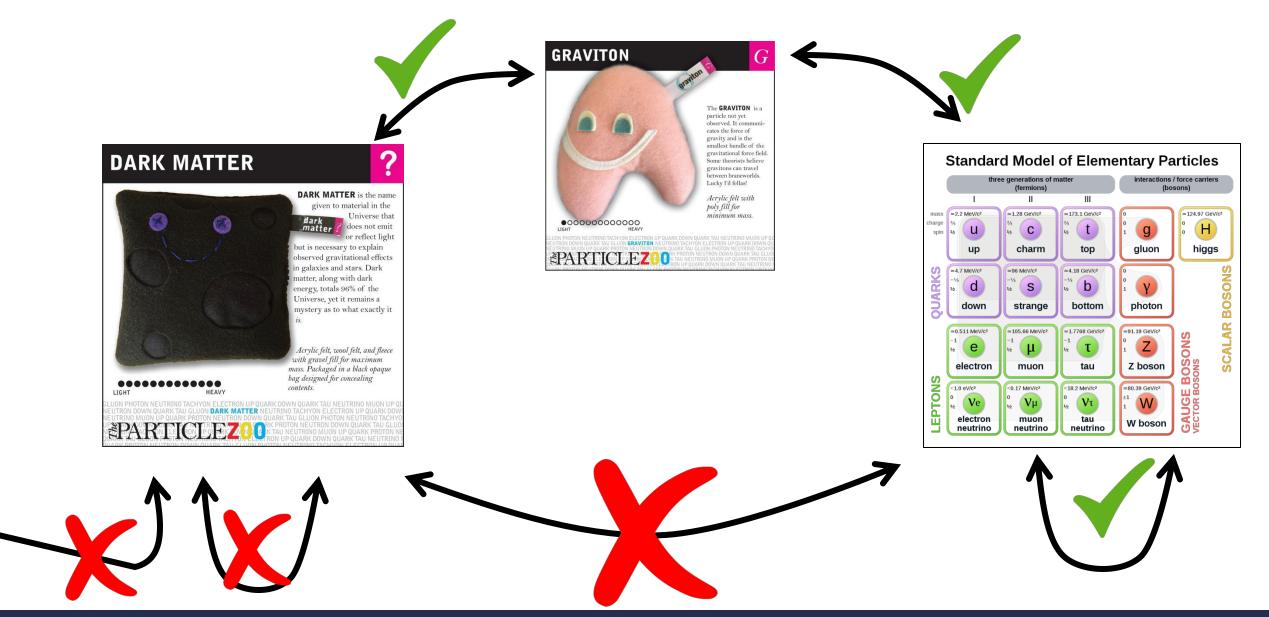
 m_{γ} [keV]

Gravitational production of dark particles

30

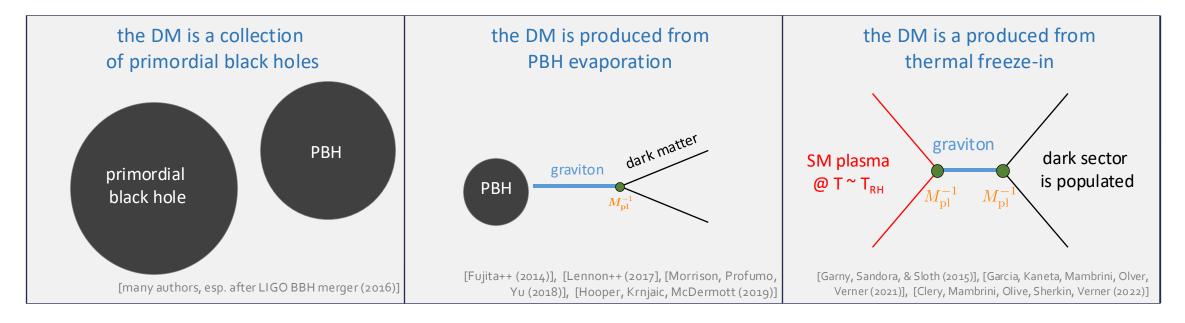
40 50

the hypothesis:

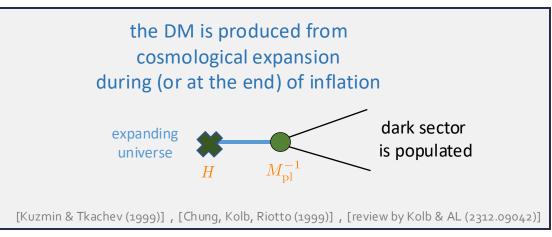


Gravitational production of dark particles

Several ways to create dark matter from gravity



this talk: cosmological gravitational particle production (CGPP)



Andrew Long

(Rice University)

CGPP for dark matter – lots of studies!

spin-0 (scalar field)

$$\mathscr{L} = \frac{1}{2} g^{\mu\nu} \partial_{\mu} \varphi \partial_{\nu} \varphi - \frac{1}{2} m^2 \varphi^2 + \frac{1}{2} \xi \varphi^2 R$$

spin-1/2 (spinor field)

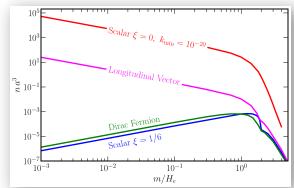
spin-1 (vector field)

$$\mathscr{L} = \frac{i}{2} \bar{\Psi} \underline{\gamma}^{\mu} (\nabla_{\mu} \Psi) - \frac{1}{2} m \bar{\Psi} \Psi + \text{h.c.}$$

Chung, Kolb, & Riotto (1998) Kuzmin & Tkachev (1998) Herring, Boyanovsky, & Zentner (2020) Ling & AL (2101.11621) Lebedev, Solomko, & Yoon (2022) Brandenberger, Kamali, & Ramos (2023) Garcia, Pierre, & Verner (2023)

Kuzmin & Tkachev (1998) Chung, Everett, Yoo, & Zhou (2011) Hashiba, Ling, & AL (2206.14204) Lebedev++ (2023)

$$S = \int \mathrm{d}^4 x \sqrt{-g} \, \mathscr{L}$$



Dimopoulos (2006) — not for DM; Graham, Mardon, & Rajendran (2016); Ahmed, Grzadkowski, & Socha (2020); Kolb & AL (2009.03828)

$$\mathscr{L} = -\frac{1}{4}g^{\mu\alpha}g^{\nu\beta}F_{\mu\nu}F_{\alpha\beta} + \frac{1}{2}m^2g^{\mu\nu}A_{\mu}A_{\nu} - \frac{1}{2}\xi_1Rg^{\mu\nu}A_{\mu}A_{\nu} - \frac{1}{2}\xi_2R^{\mu\nu}A_{\mu}A_{\nu}$$

spin-3/2 (vector-spinor field)

Kallosh, Kofman, Linde, & Van Proeyen (1999); Giudice, Riotto, & Tkachev (1999); Lemoine (1999); Kolb, AL, & McDonough (2102.10113); Kaneta, Ke, Mambrini, Olive, Verner (2023)

$$\mathscr{L} = \frac{\imath}{4} \bar{\Psi}_{\mu} \left(\underline{\gamma}^{\mu} \underline{\gamma}^{\rho} \underline{\gamma}^{\sigma} - \underline{\gamma}^{\sigma} \underline{\gamma}^{\rho} \underline{\gamma}^{\mu} \right) (\nabla_{\!\!\rho} \Psi_{\sigma}) + \frac{1}{2} m \bar{\Psi}_{\mu} \underline{\gamma}^{\mu} \underline{\gamma}^{\sigma} \Psi_{\sigma} + \text{h.c}$$

spin-2 (tensor field)

0

$$\mathscr{L}=rac{1}{2}
abla h_{\mu
u}
abla h^{\mu
u}-rac{1}{2}m^2h_{\mu
u}h^{\mu
u}+\cdots$$
 Alexander, Jenks, & McDonough (2020)
Kolb, Ling, AL, & Rosen (2302.04390)

larger reps (Kalb-Ramond)

Andrew Long

Capanelli, Jenks, Kolb, McDonough (2023)

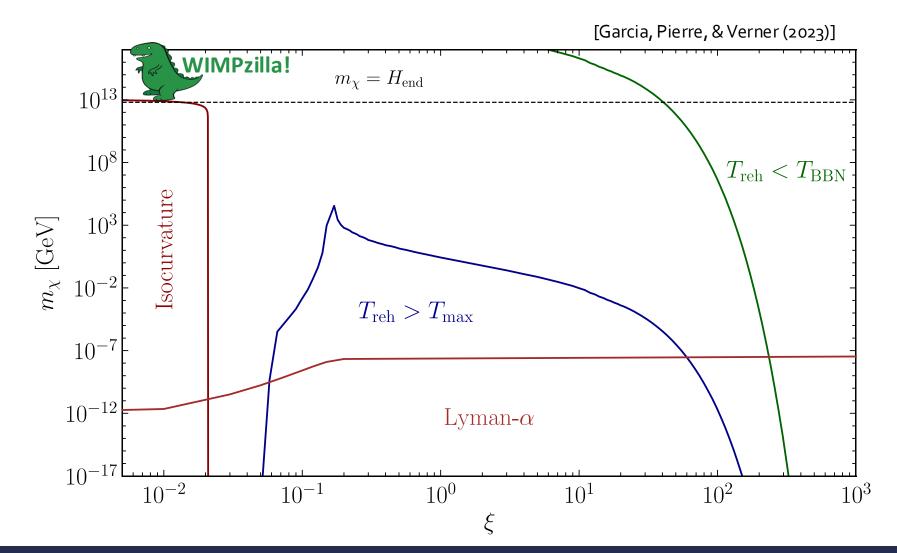
(Rice University)

Gravitational production of dark particles

Highlight: results for CGPP of spin-0 DM

$$\mathscr{L} \supset -\frac{1}{2}m_{\chi}^2\chi^2 + \frac{1}{2}\xi R\chi^2$$

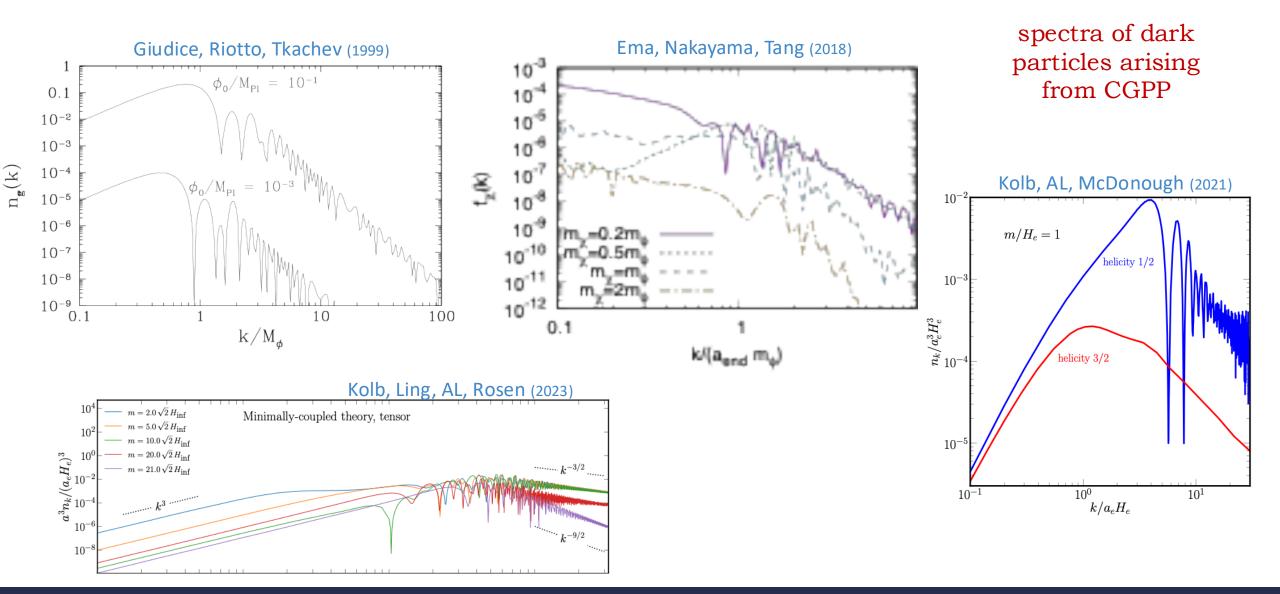
see also: [Chung, Kolb, Riotto, & Senatore (2005)], [Ling & AL (2020)], [Kolb, AL, McDonough, & Payeur (2022)], [Lebedev, Solomko, & Yoon (2022)]



7

Gravitational production of dark particles

Today's topic: what's up with these wiggles?



Gravitational production of dark particles

CGPP calculation in the Bogolubov formalism

QFT in curved spacetime:

inflation + reheating:

Fourier decomposition:

$$S = \int d^4x \sqrt{-g} \left[\frac{1}{2} g^{\mu\nu} \partial_\mu \chi \partial_\nu \chi - \frac{1}{2} m_\chi^2 \chi^2 + \frac{1}{2} \xi \chi^2 R \right]^{\text{conformal coupling to gravity}} {(\xi = 1/6)}$$

FRW: $(ds)^2 = a(\eta)^2 [(d\eta)^2 - |dx|^2]$
 $\chi(\eta, \boldsymbol{x}) = \frac{1}{a(\eta)} \int \frac{d^3 \boldsymbol{k}}{(2\pi)^3} a_{\boldsymbol{k}} \chi_k(\eta) e^{i\boldsymbol{k}\cdot\boldsymbol{x}} + \text{c.c.}$

equations of motion

$$\chi_k''(\eta) + \omega_k^2(\eta) \chi_k(\eta) = 0$$

$$\omega_k^2(\eta) = k^2 + a(\eta)^2 m_\chi^2$$
a harmonic oscillator with time-
dependent frequency

Ansatz: leading-order WKB approx.

$$\chi_k(\eta) = \tilde{\alpha}_k(\eta) \chi_k^{(+)}(\eta) + \tilde{\beta}_k(\eta) \chi_k^{(-)}(\eta)$$

$$\chi_k^{(\pm)}(\eta) = \frac{\exp[\mp i \int^{\eta} d\eta' \omega_k(\eta')]}{\sqrt{2\omega_k(\eta)}} \quad |\tilde{\alpha}_k|^2 - |\tilde{\beta}_k|^2 = 1$$

new mode functions $\partial_{\eta} \tilde{\alpha}_{k} = \frac{\omega_{k}'}{2\omega_{k}} \tilde{\beta}_{k} e^{2\mathrm{i}\int^{\eta} \mathrm{d}\eta' \omega_{k}(\eta')}$ $\partial_{\eta} \tilde{\beta}_{k} = \frac{\omega_{k}'}{2\omega_{k}} \tilde{\alpha}_{k} e^{-2\mathrm{i}\int^{\eta} \mathrm{d}\eta' \omega_{k}(\eta')}$

comoving number density of CGPP:
$$a^3n_k=rac{k^3}{2\pi^2}ig| ildeeta_k(\infty)ig|^2$$

Gravitational production of dark particles

QFT in curved spacetime:

inflation + reheating:

Fourier decomposition:

$$S = \int d^4x \sqrt{-g} \left[\frac{1}{2} g^{\mu\nu} \partial_\mu \chi \partial_\nu \chi - \frac{1}{2} m_\chi^2 \chi^2 + \frac{1}{2} \xi \chi^2 R \right]^{\text{conformal coupling to gravity}} {(\xi = 1/6)}$$

FRW: $(ds)^2 = a(\eta)^2 [(d\eta)^2 - |dx|^2]$
 $\chi(\eta, \boldsymbol{x}) = \frac{1}{a(\eta)} \int \frac{d^3 \boldsymbol{k}}{(2\pi)^3} a_{\boldsymbol{k}} \chi_k(\eta) e^{i\boldsymbol{k}\cdot\boldsymbol{x}} + \text{c.c.}$

equations of motion

$$\chi_k''(\eta) + \omega_k^2(\eta) \chi_k(\eta) = 0$$

$$\omega_k^2(\eta) = k^2 + a(\eta)^2 m_\chi^2$$
a harmonic oscillator with time-
dependent frequency

Ansatz: leading-order WKB approx.

$$\chi_k(\eta) = \tilde{\alpha}_k(\eta) \chi_k^{(+)}(\eta) + \tilde{\beta}_k(\eta) \chi_k^{(-)}(\eta)$$

$$\chi_k^{(\pm)}(\eta) = \frac{\exp[\mp i \int^{\eta} d\eta' \omega_k(\eta')]}{\sqrt{2\omega_k(\eta)}} \quad |\tilde{\alpha}_k|^2 - |\tilde{\beta}_k|^2 = 1$$

new mode functions $\partial_{\eta} \tilde{\alpha}_{k} = \frac{\omega'_{k}}{2\omega_{k}} \tilde{\beta}_{k} e^{2\mathrm{i}\int^{\eta} \mathrm{d}\eta' \omega_{k}(\eta')}$ $\partial_{\eta} \tilde{\beta}_{k} = \frac{\omega'_{k}}{2\omega_{k}} \tilde{\alpha}_{k} e^{-2\mathrm{i}\int^{\eta} \mathrm{d}\eta' \omega_{k}(\eta')}$

comoving number
density of CGPP:
$$a^3n_k = \frac{k^3}{2\pi^2} \left| \tilde{\beta}_k(\infty) \right|^2$$

Gravitational production of dark particles

QFT in curved spacetime:

inflation + reheating:

Fourier decomposition:

$$S = \int d^4x \sqrt{-g} \left[\frac{1}{2} g^{\mu\nu} \partial_\mu \chi \partial_\nu \chi - \frac{1}{2} m_\chi^2 \chi^2 + \frac{1}{2} \xi \chi^2 R \right]^{\text{conformal coupling to gravity}}_{\text{($\xi = 1/6$)}}$$

FRW: $(ds)^2 = a(\eta)^2 [(d\eta)^2 - |dx|^2]$
 $\chi(\eta, \boldsymbol{x}) = \frac{1}{a(\eta)} \int \frac{d^3 \boldsymbol{k}}{(2\pi)^3} a_{\boldsymbol{k}} \chi_k(\eta) e^{i\boldsymbol{k}\cdot\boldsymbol{x}} + \text{c.c.}$

equations of motion

$$\chi_k''(\eta) + \omega_k^2(\eta) \chi_k(\eta) = 0$$

$$\omega_k^2(\eta) = k^2 + a(\eta)^2 m_\chi^2$$
a harmonic oscillator with time-
dependent frequency

Ansatz: leading-order WKB approx.

$$\chi_k(\eta) = \tilde{\alpha}_k(\eta) \chi_k^{(+)}(\eta) + \tilde{\beta}_k(\eta) \chi_k^{(-)}(\eta)$$

$$\chi_k^{(\pm)}(\eta) = \frac{\exp[\mp i \int^{\eta} d\eta' \omega_k(\eta')]}{\sqrt{2\omega_k(\eta)}} \quad |\tilde{\alpha}_k|^2 - |\tilde{\beta}_k|^2 = 1$$

new mode functions $\partial_{\eta} \tilde{\alpha}_{k} = \frac{\omega_{k}'}{2\omega_{k}} \tilde{\beta}_{k} e^{2i \int^{\eta} d\eta' \omega_{k}(\eta')}$ $\partial_{\eta} \tilde{\beta}_{k} = \frac{\omega_{k}'}{2\omega_{k}} \tilde{\alpha}_{k} e^{-2i \int^{\eta} d\eta' \omega_{k}(\eta')}$

comoving number density of CGPP:
$$a^3n_k=rac{k^3}{2\pi^2}ig| ilde{eta}_k(\infty)ig|^2$$

Gravitational production of dark particles

QFT in curved spacetime:

inflation + reheating:

Fourier decomposition:

$$\begin{split} S &= \int \mathrm{d}^4 x \, \sqrt{-g} \left[\frac{1}{2} g^{\mu\nu} \partial_\mu \chi \partial_\nu \chi - \frac{1}{2} m_\chi^2 \chi^2 + \frac{1}{2} \xi \chi^2 R \right]^{\text{conformal coupling}} \\ \mathrm{FRW:} \quad (\mathrm{d}s)^2 &= a(\eta)^2 \left[(\mathrm{d}\eta)^2 - |\mathrm{d}x|^2 \right] \\ \chi(\eta, \boldsymbol{x}) &= \frac{1}{a(\eta)} \int \frac{\mathrm{d}^3 \boldsymbol{k}}{(2\pi)^3} \, a_{\boldsymbol{k}} \, \chi_k(\eta) \, e^{\mathrm{i} \boldsymbol{k} \cdot \boldsymbol{x}} + \mathrm{c.c.} \end{split}$$

equations of motion

$$\chi_k''(\eta) + \omega_k^2(\eta) \chi_k(\eta) = 0$$

$$\omega_k^2(\eta) = k^2 + a(\eta)^2 m_\chi^2$$
a harmonic oscillator with time-
dependent frequency

x

Ansatz: leading-order WKB approx.

$$\chi_k(\eta) = \tilde{\alpha}_k(\eta) \chi_k^{(+)}(\eta) + \tilde{\beta}_k(\eta) \chi_k^{(-)}(\eta)$$

$$\chi_k^{(\pm)}(\eta) = \frac{\exp[\mp i \int^{\eta} d\eta' \omega_k(\eta')]}{\sqrt{2\omega_k(\eta)}} \quad |\tilde{\alpha}_k|^2 - |\tilde{\beta}_k|^2 = 1$$

$$\begin{split} & \underset{\partial_{\eta}\tilde{\alpha}_{k}=\frac{\omega_{k}'}{2\omega_{k}}\tilde{\beta}_{k} \operatorname{e}^{2\mathrm{i}\int^{\eta}\mathrm{d}\eta'\omega_{k}(\eta')} \\ & \partial_{\eta}\tilde{\beta}_{k}=\frac{\omega_{k}'}{2\omega_{k}}\tilde{\alpha}_{k} \operatorname{e}^{-2\mathrm{i}\int^{\eta}\mathrm{d}\eta'\omega_{k}(\eta')} \end{split}$$

comoving number density of CGPP: $a^3n_k=rac{k^3}{2\pi^2}ig| ildeeta_k(\infty)ig|^2$

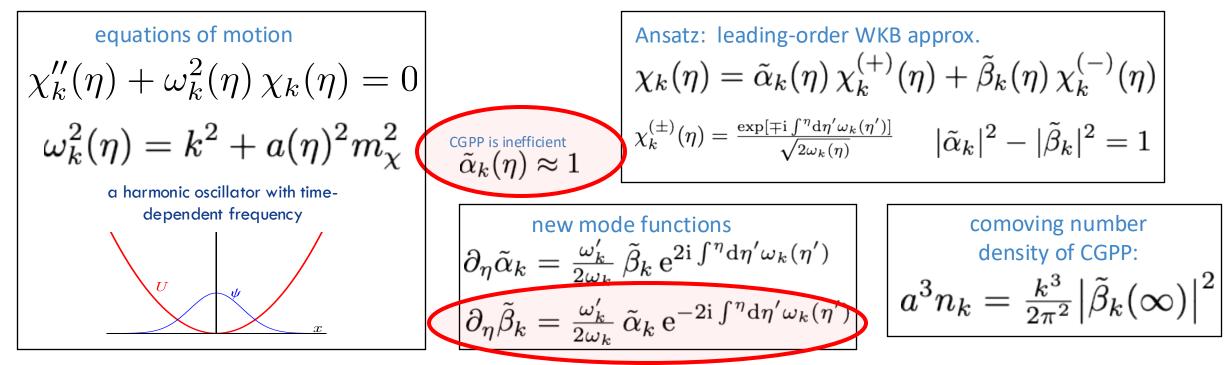
Gravitational production of dark particles

QFT in curved spacetime:

inflation + reheating:

Fourier decomposition:

$$\begin{split} S &= \int \mathrm{d}^4 x \, \sqrt{-g} \left[\frac{1}{2} g^{\mu\nu} \partial_\mu \chi \partial_\nu \chi - \frac{1}{2} m_\chi^2 \chi^2 + \frac{1}{2} \xi \chi^2 R \right]_{(\xi = 1/6)}^{\mathrm{conformal coupling}} \\ \mathrm{FRW:} \quad (\mathrm{d}s)^2 &= a(\eta)^2 [(\mathrm{d}\eta)^2 - |\mathrm{d}x|^2] \\ \chi(\eta, \boldsymbol{x}) &= \frac{1}{a(\eta)} \int \frac{\mathrm{d}^3 \boldsymbol{k}}{(2\pi)^3} \, a_{\boldsymbol{k}} \, \chi_k(\eta) \, e^{\mathrm{i} \boldsymbol{k} \cdot \boldsymbol{x}} + \mathrm{c.c.} \end{split}$$



Gravitational production of dark particles

Resonant contributions

Bogolubov coefficients:

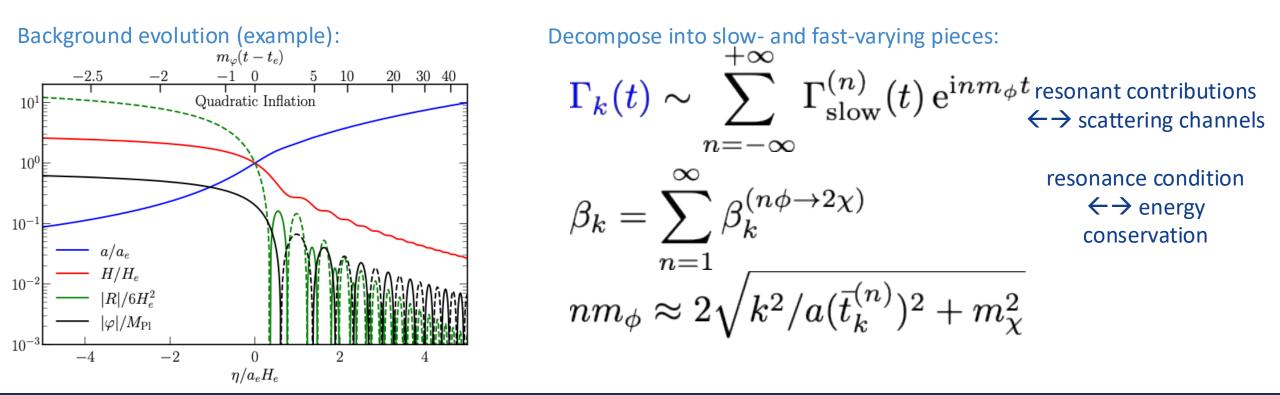
$$\beta_k \approx \int_{-\infty}^{\infty} \mathrm{d}t \, \Gamma_k(t) \, \mathrm{e}^{-2\mathrm{i}\int^t \mathrm{d}t' \sqrt{k^2/a(t')^2 + m_\chi^2}} \quad \text{where} \quad \Gamma_k(t) = \frac{m_\chi^2 \, H(t)/2}{k^2/a(t)^2 + m_\chi^2}$$

 $2 \pi (1) / 2$

(Rice University)

Andrew Long

this integral resembles a Fourier transform it selects out oscillatory components when the inflaton oscillates



Gravitational production of dark particles

Analytic expressions & power-law behavior

Evaluate resonant contributions using stationary phase approximation:

$$\beta_k^{(n\phi\to 2\chi)} = \mathcal{A}_k^{(n\to 2)} e^{i\Phi_k^{(n\to 2)}}$$
$$\Delta \Phi_k^{(n\to 2)} = \Phi_k^{(n\to 2)} - \Phi_{k,\text{leading}}^{(n\to 2)}$$
$$\kappa_n = \frac{2k/\underline{a}}{\sqrt{(nm_\phi)^2 - (2m_\chi)^2}}$$

$$\mathcal{A}_{k}^{(1\to2)} = -\kappa_{1}^{-15/4} \, 3\alpha_{3} \sqrt{\frac{-\frac{i}{2}\pi}{\frac{1}{4} - r_{\chi}^{2}}} \, r_{\chi}^{2} \left(1 + \mathcal{O}(\kappa_{1}^{-3})\right) \,, \tag{4.3a}$$

$$\mathcal{A}_{k}^{(2\to2)} = \kappa_{2}^{-9/4} \frac{3}{16} \sqrt{\frac{-i\pi}{1 - r^{2}}} \, r_{\chi}^{2} \left(1 + \frac{x_{0} + x_{1}r_{\chi}^{2} + x_{2}r_{\chi}^{4} - 416r_{\chi}^{6} + 384r_{\chi}^{8}}{1024(1 - r^{2})^{2}} \kappa_{2}^{-3} + \mathcal{O}(\kappa_{2}^{-6})\right) \,,$$

$$\kappa_{2}^{(-3/2)} = \kappa_{2}^{-9/4} \frac{6}{16} \sqrt{\frac{r\kappa}{1 - r_{\chi}^{2}}} r_{\chi}^{2} \left(1 + \frac{\kappa_{0} + \kappa_{1}r_{\chi} + \kappa_{2}r_{\chi}}{1024(1 - r_{\chi}^{2})^{2}} \kappa_{2}^{-3} + \mathcal{O}(\kappa_{2}^{-6}) \right) ,$$
(4.3b)

$$\mathcal{A}_{k}^{(3\to2)} = \kappa_{3}^{-15/4} \frac{\alpha_{3}}{9} \sqrt{\frac{-\frac{3}{2}i\pi}{\frac{9}{4} - r_{\chi}^{2}}} r_{\chi}^{2} \left(1 + \mathcal{O}(\kappa_{3}^{-3})\right) , \qquad (4.3c)$$

$$\mathcal{A}_{k}^{(4\to2)} = \kappa_{4}^{-21/4} \frac{3\left(-21 + 68\alpha_{3}^{2} + 24\alpha_{4} + 12r_{\chi}^{2}\right)}{4096} \sqrt{\frac{-2i\pi}{4 - r_{\chi}^{2}}} r_{\chi}^{2} \left(1 + \mathcal{O}(\kappa_{4}^{-3})\right) , \qquad (4.3d)$$

$$\Delta \Phi_k^{(1 \to 2)} = \kappa_1^{-3/2} \left(\frac{y_0^{(1)} + y_1^{(1)} r_\chi^2 - 1280 r_\chi^4}{480 \left(1 - 4r_\chi^2\right)} + z^{(1)} + \mathcal{O}(\kappa_1^{-3}) \right) , \qquad (4.4a)$$

$$\Delta \Phi_k^{(2 \to 2)} = \kappa_2^{-3/2} \left(\frac{y_0^{(2)} + y_1^{(2)} r_\chi^2 - 80 r_\chi^4}{960 \left(1 - r_\chi^2\right)} + z^{(2)} + \mathcal{O}(\kappa_2^{-3}) \right) , \qquad (4.4b)$$

$$\Delta \Phi_k^{(3 \to 2)} = \kappa_3^{-3/2} \left(\frac{y_0^{(3)} + y_1^{(3)} r_\chi^2 - 1280 r_\chi^4}{12960 \left(9 - 4r_\chi^2\right)} + z^{(3)} + \mathcal{O}(\kappa_3^{-3}) \right) , \qquad (4.4c)$$

$$\Delta \Phi_k^{(4 \to 2)} = \kappa_4^{-3/2} \left(\frac{y_0^{(4)} + y_1^{(4)} r_\chi^2 + y_2^{(4)} r_\chi^4 + 2588 r_\chi^6}{960 \left(4 - r_\chi^2\right) \left(-21 + 68\alpha_3^2 + 24\alpha_4 + 12r_\chi^2\right)} + z^{(4)} + \mathcal{O}(\kappa_4^{-3}) \right) , \quad (4.4d)$$

[see Basso, Chung, Kolb, AL (2209.01713) for additional details]

Gravitational production of dark particles

Analytic expressions & power-law behavior

Evaluate resonant contributions using stationary phase approximation:

$$\beta_{k}^{(n\phi\to2\chi)} = \mathcal{A}_{k}^{(n\to2)} e^{i\Phi_{k}^{(n\to2)}} A_{k}^{(1=2)} = -\kappa_{1}^{-15/4} 3\alpha_{3} \sqrt{\frac{-\frac{1}{2}\pi}{4} - r_{\chi}^{2}} r_{\chi}^{2} (1 + \mathcal{O}(\kappa_{1}^{-3})), \qquad (4.3a)$$

$$\Delta \Phi_{k}^{(n\to2)} = \Phi_{k}^{(n\to2)} - \Phi_{k,\text{leading}}^{(n\to2)} A_{k}^{(1=2)} = -\kappa_{1}^{-15/4} 3\alpha_{3} \sqrt{\frac{-\frac{1}{2}\pi}{4} - r_{\chi}^{2}} r_{\chi}^{2} (1 + \mathcal{O}(\kappa_{1}^{-3})), \qquad (4.3a)$$

$$\kappa_{n} = \frac{2k/\underline{a}}{\sqrt{(nm_{\phi})^{2} - (2m_{\chi})^{2}}} A_{k}^{(3=2)} \frac{-\kappa_{1}^{-15/4} 3\alpha_{3} \sqrt{\frac{-\frac{1}{2}\pi}{4} - r_{\chi}^{2}} r_{\chi}^{2} (1 + \mathcal{O}(\kappa_{1}^{-3})), \qquad (4.3a)$$

$$\kappa_{n} = \frac{2k/\underline{a}}{\sqrt{(nm_{\phi})^{2} - (2m_{\chi})^{2}}} A_{k}^{(3=2)} \frac{-\kappa_{1}^{-15/4} 3\alpha_{3} \sqrt{\frac{-\frac{1}{2}\pi}{4} - r_{\chi}^{2}} r_{\chi}^{2} (1 + \frac{\kappa_{1} + x_{1}r_{\chi}^{4} + x_{1}r_{\chi}^{4} - 416r_{\chi}^{6} + 384r_{\chi}^{6} r_{2}^{-3} + \mathcal{O}(\kappa_{2}^{-6})), \qquad (4.3b)}{A_{k}^{(3=2)} - r_{1}^{-17/4} 3\alpha_{3} \sqrt{\frac{-\frac{1}{2}\pi}{4} - r_{\chi}^{2}} r_{\chi}^{2} (1 + \mathcal{O}(\kappa_{1}^{-3})), \qquad (4.3c)}$$

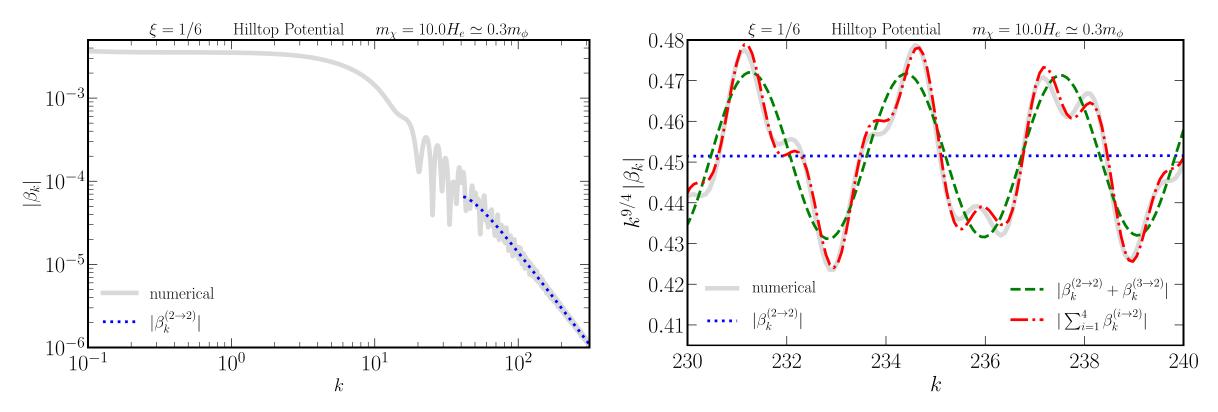
$$\kappa_{n} = \frac{2k/\underline{a}}{\sqrt{(nm_{\phi})^{2} - (2m_{\chi})^{2}}} A_{k}^{(4=2)} - \kappa_{4}^{-11/4} \frac{3(-21 + \kappa_{1} + 34r_{1}r_{\chi}^{4} - 416r_{\chi}^{6} + 384r_{\chi}^{6} r_{2}^{-3} + \mathcal{O}(\kappa_{2}^{-6}))}{R_{k}^{(3=2)} - r_{4}^{-11/4} 3\alpha_{3} \sqrt{\frac{-\frac{1}{2}\pi}{4}} r_{\chi}^{2} (1 + \mathcal{O}(\kappa_{1}^{-3})), \qquad (4.3c)}$$

$$\kappa_{n} = \frac{2k/\underline{a}}{\sqrt{(nm_{\phi})^{2} - (2m_{\chi})^{2}}} A_{k}^{(4=2)} - \kappa_{4}^{-11/4} \frac{3(-21 + \kappa_{1} + 34r_{1}r_{\chi}^{2} + 416r_{\chi}^{6} + 384r_{\chi}^{6} r_{2}^{-3} + \mathcal{O}(\kappa_{2}^{-6}))}{R_{k}^{(4=2)} - \kappa_{4}^{-11/4} \frac{3(-21 + \kappa_{1} + 34r_{1}r_{\chi}^{2} + 416r_{\chi}^{6} + 384r_{\chi}^{6} r_{2}^{-3} + \mathcal{O}(\kappa_{2}^{-6}))}{R_{k}^{(4=2)} - \kappa_{4}^{-11/4} \frac{3(-21 + \kappa_{1} + 34r_{1}r_{\chi}^{2} + 416r_{\chi}^{6} + 416r_{\chi}^{-3})}{R_{k}^{(4=2)} - \kappa_{4}^{-11/4} \frac{3(-21 + \kappa_{1} + 34r_{1}r_{\chi}^{2} + 416r_{\chi}^{6} + 36r_{\chi}^{-4} + 416r_{\chi}^{6} + 416r_{\chi}^{-4} + 416r_{\chi}^{-4$$

Gravitational production of dark particles

Numerical validation

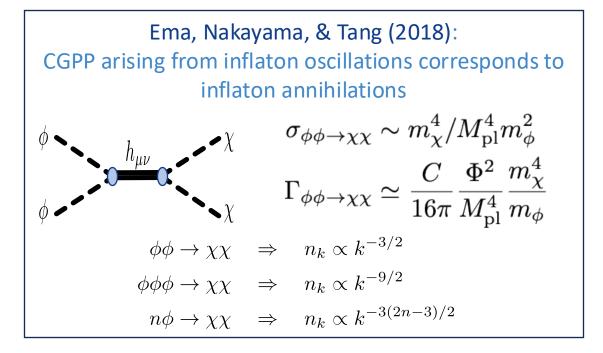
Compare two approaches: direct numerical integration & stationary phase approximation.



The oscillatory behavior (with wavenumber k) in the spectrum (Bogolubov coefficient β_k) is captured by interference between resonant contributions to the Bogolubov integral, which are associated with different inflaton annihilation channels $n\phi \rightarrow 2\chi$

Gravitational production of dark particles

Scattering description



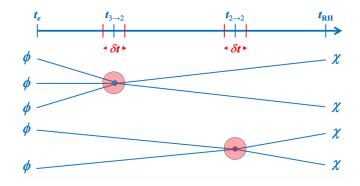
Chung, Kolb, & AL (2018): We arrive at the same power-law scaling relations from the Bogolubov formalism $\mathcal{A}_k^{(2 \to 2)} \propto k^{-9/4} \Rightarrow n_k \propto k^{-3/2}$ $\mathcal{A}_k^{(3 \to 2)} \propto k^{-15/4} \Rightarrow n_k \propto k^{-9/2}$ $\mathcal{A}_k^{(3 \to 2)} \propto k^{-21/4} \Rightarrow n_k \propto k^{-15/2}$ Basso, Chung, Kolb, & AL (2022): We study interference effects using the Bogolubov formalism. How does the interference correspond to a scattering?

Naively seems like interference is impossible:

- initial states are different (e.g., 2ϕ vs 3ϕ)
- final states are different ($E_{\chi} = m_{\phi} vs 3m_{\phi}/2$)

These issues are resolved because:

- the initial inflaton coherent state is a state of indefinite particle number
- Early 3-to-2 scatterings interfere with late 2-to-2 scatterings -- energy lost through redshift



Gravitational production of dark particles

Summary

Context: Cosmological gravitational particle production (CGPP) arises when quantum fields `feel' the homogeneous expansion of the universe during inflation or at the end of inflation.

CGPP provides a simple explanation for the origin of dark matter (across wide mass & spin), and it leads to an unavoidable production of any (non-conformal) hidden-sector particles.

Question: What's the origin of wiggles seen in (some) spectra of particles arising from CGPP?

Answer: Interference of resonant contributions to the Bogolubov integral, which can also be interpreted as quantum interference between different annihilation channels: $n\phi \rightarrow 2\chi$.

Points for discussion:

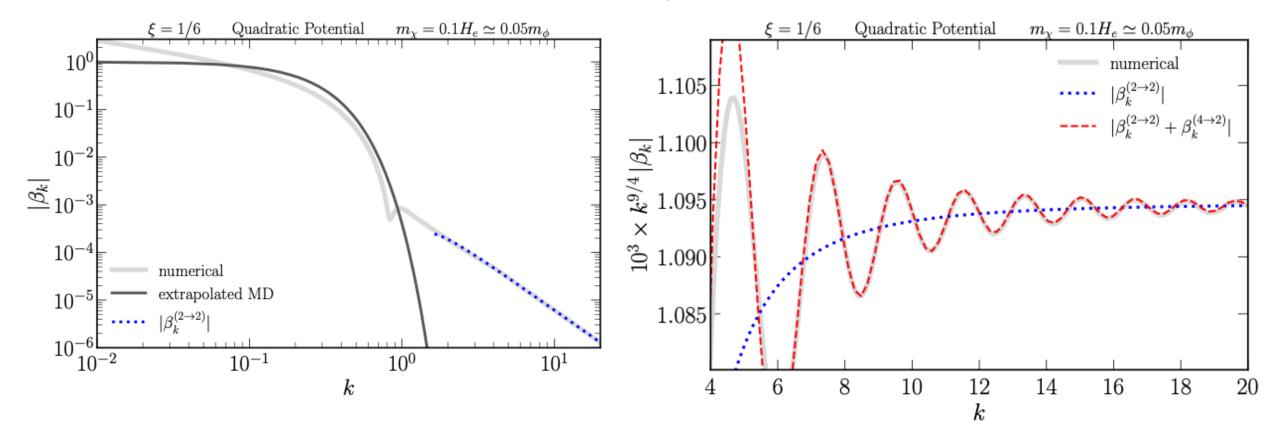
- The interference fringes don't impact the total abundance of CGPP appreciably.
- So, what are possible observable signatures of the interference fringes?
- More work needed to establish a rigorous scattering description of CGPP interference.
- We focused on a conformally coupled scalar field how different for fields with spin?
- We focused on CGPP is there also an impact on preheating due to a non-grav coupling?

backup slides

numerical vs analytical for a minimally-coupled scalar

Numerical validation – quadratic inflaton potential

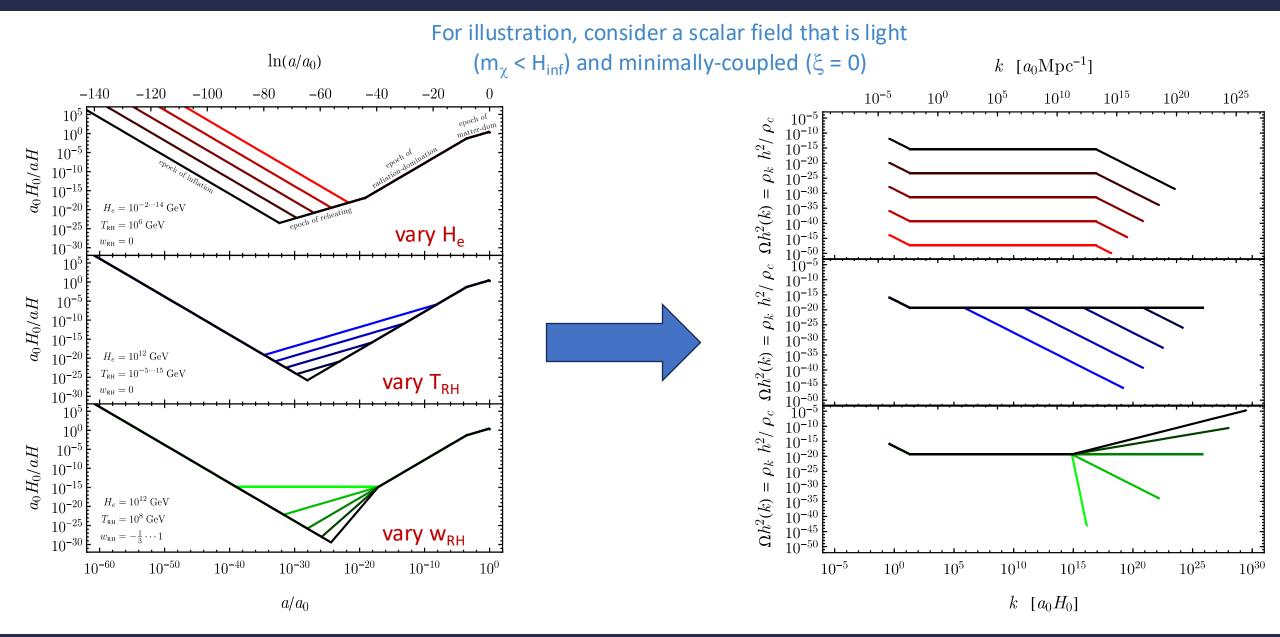
For a quadratic inflaton potential, the hierarchy between H_e and m_{ϕ} is smaller (than for hilltop)



The analytical approximation converges more quickly – already $2 \rightarrow 2$ and $4 \rightarrow 2$ contributions give an excellent fit to the direct numerical calculation

modeling reheating how it impacts the spectrum

Effect of reheating epoch



Gravitational production of dark particles

phenomenological considerations in a concrete model

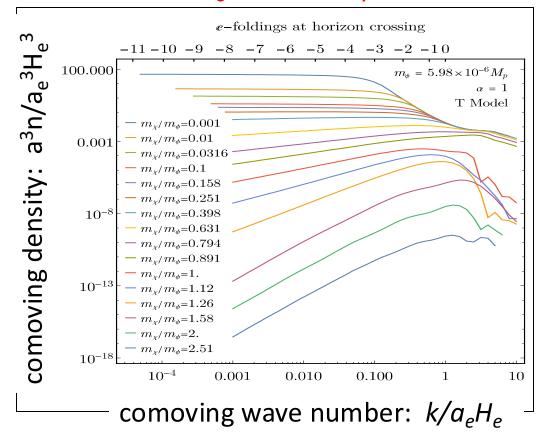
Example: alpha attractor

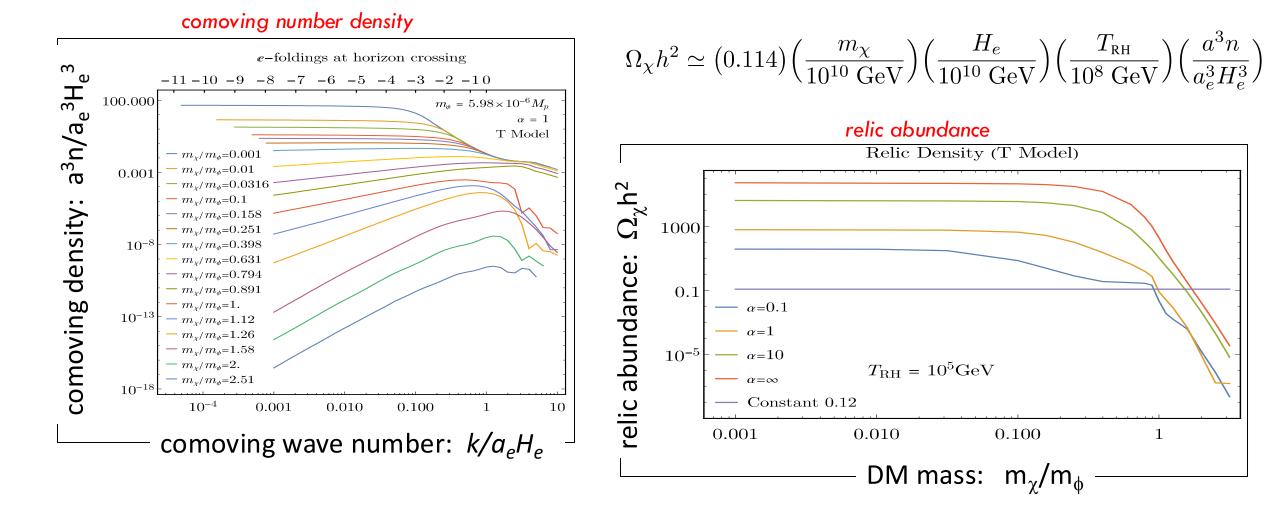
[Ling & AL (2101.11621)]



Gravitational production of dark particles

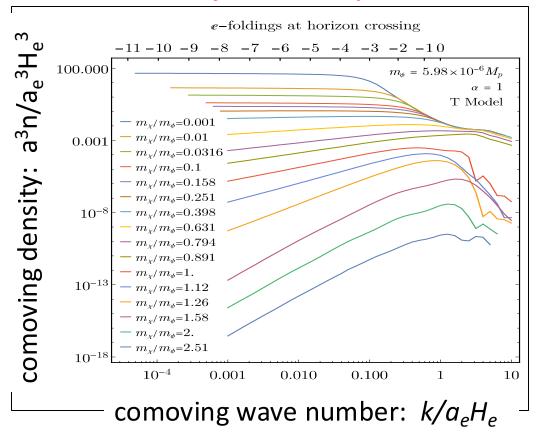
comoving number density





Gravitational production of dark particles

29



$$k = a_e H_e \qquad \text{(Hubble-scale modes at the end of inflation)}$$

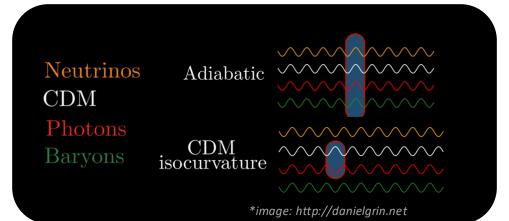
$$\lambda_{\text{phys,e}} = 2\pi a_e / k \simeq \left(10^{-29} \text{ meters}\right) \left(\frac{H_e}{10^{14} \text{ GeV}}\right)^{-1}$$

$$\lambda_{\text{phys,0}} = 2\pi a_0 / k \simeq \left(100 \text{ meters}\right) \left(\frac{H_e}{10^{14} \text{ GeV}}\right)^{-1/3} \left(\frac{T_{\text{RH}}}{10^9 \text{ GeV}}\right)^{-1/3}$$

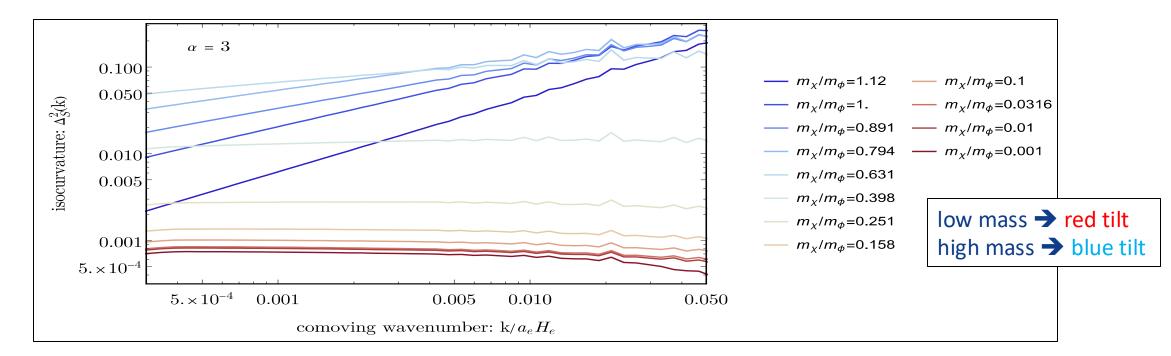
$$p_{\text{phys,0}} = \hbar k / a_0 \simeq \left(5 \times 10^{-18} \text{ GeV}\right) \left(\frac{H_e}{10^{14} \text{ GeV}}\right)^{1/3} \left(\frac{T_{\text{RH}}}{10^9 \text{ GeV}}\right)^{1/3}$$

Gravitational production of dark particles

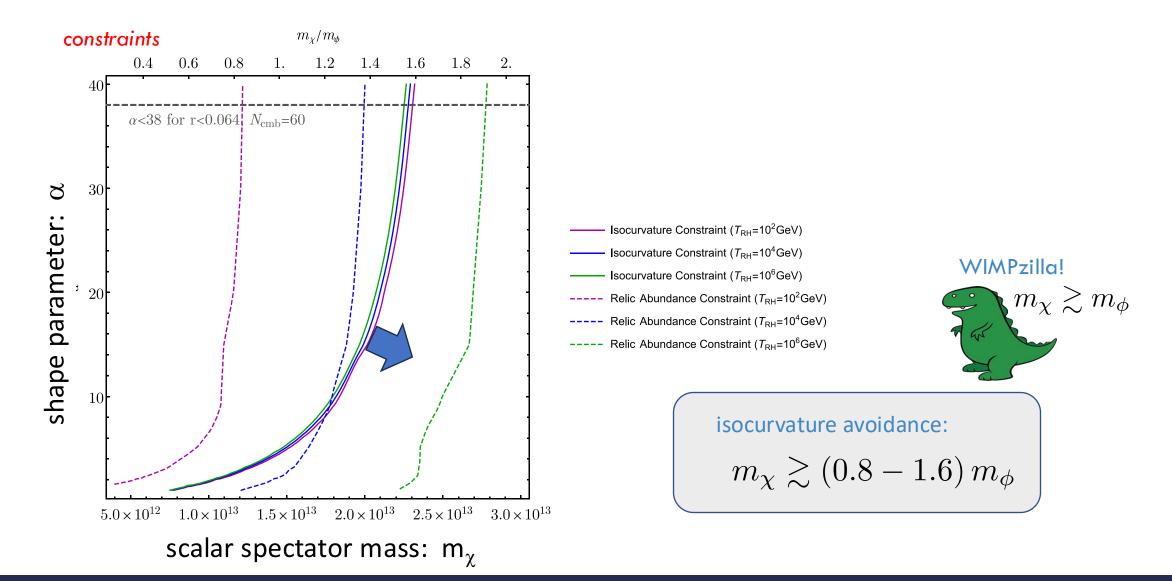
CMB isocurvature



$$\Delta_{\mathcal{S}}^2(k_{\rm cmb}) < 7.3 \times 10^{-11}$$
$$k_{\rm cmb} = 0.002 \,\,{\rm Mpc}^{-1}a_0$$
$$k_{\rm cmb}/a_e H_e \approx e^{-50} \simeq 2 \times 10^{-22}$$



Gravitational production of dark particles



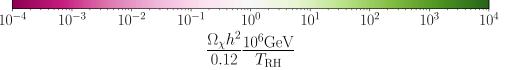
Gravitational production of dark particles

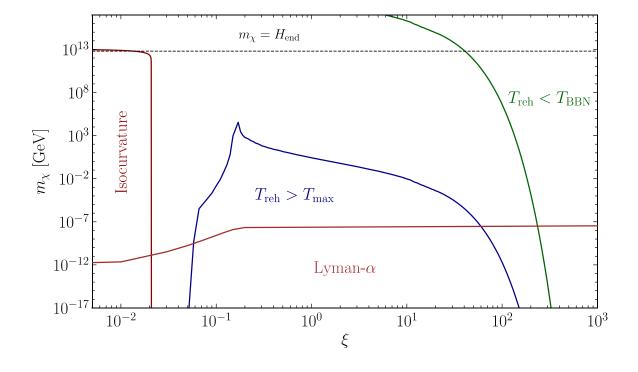
going non-minimal

[Kolb, AL, McDonough, & Payeur (2022)], [Garcia, Pierre, & Verner (2023)] see also: [Markkanen, Rajantie, & Tenkanen (2018); Tenkanen (2019)]

$$\mathscr{L} \supset -\frac{1}{2}m_{\chi}^2\chi^2 + \frac{1}{2}\xi R\chi^2$$







isocurvature constraints on ultra-light scalar GPP can be avoided by introducing a "small" non-minimal coupling to gravity

Gravitational production of dark particles