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motivation
making dark matter 

from gravity
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dark matter pulls on things

Dark matter pulls on stars in galaxies
(galactic rotation curves)

Dark matter pulls on light
(gravitational lensing)

Dark matter pulled on e-p+ plasma
(CMB & large scale structure)
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no evidence (yet) of dark matter bumping into things

(notwithstanding hints of new physics, there’s no overwhelming evidence)

No dark matter bumping into things
(direct detection; 1805.12562)

No dark matter decaying into things
(X-ray emission; 1908.09037)

No dark matter bumping into itself
(annihilation to ’s; 1912.09486)
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the hypothesis:
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[Fujita++ (2014)],  [Lennon++ (2017], [Morrison, Profumo, 
Yu (2018)],  [Hooper, Krnjaic, McDermott (2019)][many authors, esp. after LIGO BBH merger (2016)]

[Garny, Sandora, & Sloth (2015)], [Garcia, Kaneta, Mambrini, Olver, 
Verner (2021)],  [Clery, Mambrini, Olive, Sherkin, Verner (2022)]

[Kuzmin & Tkachev (1999)]  ,  [Chung, Kolb, Riotto (1999)]  ,  [review by Kolb & AL (2312.09042)]

Several ways to create dark matter from gravity

the DM is a collection 
of primordial black holes

the DM is produced from 
PBH evaporation

the DM is a produced from 
thermal freeze-in

SM plasma
@ T ~ TRH

dark sector 
is populated

graviton
graviton

PBH
primordial 
black hole

PBH
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the DM is produced from 
cosmological expansion

during (or at the end) of inflation

dark sector 
is populated

expanding
universe

this talk:
cosmological 

gravitational particle 
production (CGPP)
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CGPP for dark matter – lots of studies!

spin-0 (scalar field)

spin-1/2 (spinor field)

spin-1 (vector field)

spin-3/2 (vector-spinor field)

spin-2 (tensor field)

Alexander, Jenks, & McDonough (2020)
Kolb, Ling, AL, & Rosen (2302.04390) 

Chung, Kolb, & Riotto (1998)
Kuzmin & Tkachev (1998)
Herring, Boyanovsky, & Zentner (2020)
Ling & AL (2101.11621)
Lebedev, Solomko, & Yoon (2022)
Brandenberger, Kamali, & Ramos (2023)
Garcia, Pierre, & Verner (2023)

Kuzmin & Tkachev (1998)
Chung, Everett, Yoo, & Zhou (2011)
Hashiba, Ling, & AL (2206.14204)
Lebedev++ (2023)

Dimopoulos (2006) – not for DM;  Graham, Mardon, & Rajendran (2016); 
Ahmed, Grzadkowski, & Socha (2020); Kolb & AL (2009.03828)

Kallosh, Kofman, Linde, & Van Proeyen  (1999);   Giudice, Riotto, & Tkachev  (1999);  Lemoine (1999); 
Kolb, AL, & McDonough (2102.10113); Kaneta, Ke, Mambrini, Olive, Verner (2023)
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larger reps (Kalb-Ramond)
Capanelli, Jenks, Kolb, McDonough (2023)
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Highlight:  results for CGPP of spin-0 DM
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[Garcia, Pierre, & Verner (2023)]

see also:  [Chung, Kolb, Riotto, & Senatore (2005)] ,  [Ling & AL (2020)] ,  [Kolb, AL, 
McDonough, & Payeur (2022)] ,  [Lebedev, Solomko, & Yoon (2022)]

WIMPzilla!
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Today’s topic:  what’s up with these wiggles?
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Giudice, Riotto, Tkachev (1999) Ema, Nakayama, Tang (2018)

Kolb, AL, McDonough (2021)

Kolb, Ling, AL, Rosen (2023)

spectra of dark 
particles arising 

from CGPP



CGPP calculation
in the Bogolubov formalism
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CGPP in a nutshell

QFT in curved spacetime:

Fourier decomposition:
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conformal coupling 
to gravity

inflation + reheating:

Ansatz:  leading-order WKB approx.

comoving number 
density of CGPP:

new mode functions
a harmonic oscillator with time-

dependent frequency

equations of motion
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CGPP in a nutshell

QFT in curved spacetime:

Fourier decomposition:
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conformal coupling 
to gravity

inflation + reheating:

Ansatz:  leading-order WKB approx.

comoving number 
density of CGPP:

new mode functions
a harmonic oscillator with time-

dependent frequency

equations of motion
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CGPP in a nutshell

QFT in curved spacetime:

Fourier decomposition:
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density of CGPP:
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CGPP in a nutshell

QFT in curved spacetime:

Fourier decomposition:
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CGPP in a nutshell

QFT in curved spacetime:

Fourier decomposition:
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conformal coupling 
to gravity

inflation + reheating:

Ansatz:  leading-order WKB approx.

comoving number 
density of CGPP:

new mode functions

CGPP is inefficient

a harmonic oscillator with time-
dependent frequency

equations of motion
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Resonant contributions
Bogolubov coefficients:
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this integral resembles a Fourier transform 
it selects out oscillatory components when the inflaton oscillates

where

Decompose into slow- and fast-varying pieces:

resonant contributions 
→ scattering channels

resonance condition 
→ energy 
conservation

Background evolution (example):
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Analytic expressions & power-law behavior
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Basso, Chung, Kolb, AL [2209.01713]

Evaluate resonant contributions using stationary phase approximation:

[see Basso, Chung, Kolb, AL (2209.01713) for additional details]
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Analytic expressions & power-law behavior
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Basso, Chung, Kolb, AL [2209.01713]

Evaluate resonant contributions using stationary phase approximation:

[see Basso, Chung, Kolb, AL (2209.01713) for additional details]

power-law scaling agrees with earlier 
numerical work:
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Numerical validation
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Basso, Chung, Kolb, AL [2209.01713]

Compare two approaches:  direct numerical integration & stationary phase approximation.

The oscillatory behavior (with wavenumber k) in the spectrum (Bogolubov coefficient k) is captured by 
interference between resonant contributions to the Bogolubov integral, which are associated with different 

inflaton annihilation channels n → 2
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Scattering description
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Basso, Chung, Kolb, AL [2209.01713]
Ema, Nakayama, & Tang (2018):

CGPP arising from inflaton oscillations corresponds to 
inflaton annihilations

Naively seems like interference is impossible:
• initial states are different (e.g., 2 vs 3)
• final states are different (E = m vs 3m/2)

These issues are resolved because: 
• the initial inflaton coherent state is a state of indefinite 

particle number
• Early 3-to-2 scatterings interfere with late 2-to-2 

scatterings -- energy lost through redshift
Chung, Kolb, & AL (2018):

We arrive at the same power-law scaling relations from 
the Bogolubov formalism

Basso, Chung, Kolb, & AL (2022):
We study interference effects using the Bogolubov 

formalism.  How does the interference correspond to a 
scattering?
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Context:  Cosmological gravitational particle production (CGPP) arises when quantum fields `feel’ the 
homogeneous expansion of the universe during inflation or at the end of inflation.  
CGPP provides a simple explanation for the origin of dark matter (across wide mass & spin), and it leads 
to an unavoidable production of any (non-conformal) hidden-sector particles.  

Question:  What’s the origin of wiggles seen in (some) spectra of particles arising from CGPP?

Answer:  Interference of resonant contributions to the Bogolubov integral, which can also be interpreted as 
quantum interference between different annihilation channels:  n → 2 .  

Points for discussion:
• The interference fringes don’t impact the total abundance of CGPP appreciably.  
• So, what are possible observable signatures of the interference fringes?  
• More work needed to establish a rigorous scattering description of CGPP interference.  
• We focused on a conformally coupled scalar field – how different for fields with spin?
• We focused on CGPP – is there also an impact on preheating due to a non-grav coupling?

Summary



backup slides



numerical vs analytical
for a minimally-coupled scalar
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Numerical validation – quadratic inflaton potential
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Basso, Chung, Kolb, AL [2209.01713]

For a quadratic inflaton potential, the hierarchy between He and m is smaller (than for hilltop)

The analytical approximation converges more quickly – already 2→2 and 4→2 contributions give an 
excellent fit to the direct numerical calculation



modeling reheating
how it impacts the spectrum
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Effect of reheating epoch

25

For illustration, consider a scalar field that is light 
(m < Hinf) and minimally-coupled ( = 0)

vary He

vary TRH

vary wRH



phenomenological considerations
in a concrete model
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[Ling & AL (2101.11621)]

Example: alpha attractor

27

T-model
alpha attractor

FRW background

[Ling & AL (2101.11621)]
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[Ling & AL (2101.11621)]

Numerical results
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comoving number density

comoving wave number:  k/aeHe

co
m

ov
in

g 
de

ns
ity

:  
a3 n

/a
e3 H

e3
[Ling & AL (2101.11621)]
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[Ling & AL (2101.11621)]

Numerical results
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comoving number density

comoving wave number:  k/aeHe

co
m

ov
in

g 
de

ns
ity

:  
a3 n

/a
e3 H

e3

relic abundance

DM mass:   m/m
re

lic
 a

bu
nd

an
ce

:  


h
2

[Ling & AL (2101.11621)]
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[Ling & AL (2101.11621)]

Numerical results
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comoving number density

comoving wave number:  k/aeHe

co
m

ov
in

g 
de

ns
ity

:  
a3 n

/a
e3 H

e3
[Ling & AL (2101.11621)]
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[Ling & AL (2101.11621)]

CMB isocurvature
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*image: http://danielgrin.net

low mass ➔ red tilt
high mass ➔ blue tilt

[Ling & AL (2101.11621)]
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[Ling & AL (2101.11621)]

Parameter space
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constraints

isocurvature avoidance:

WIMPzilla!

sh
ap

e 
pa

ra
m

et
er

:  


scalar spectator mass:  m

[Ling & AL (2101.11621)]
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going non-minimal
[Kolb, AL, McDonough, & Payeur (2022)],    [Garcia, Pierre, & Verner (2023)]

see also:  [Markkanen, Rajantie, & Tenkanen (2018);   Tenkanen (2019)]
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isocurvature constraints on ultra-light scalar GPP 
can be avoided by introducing 

a “small” non-minimal coupling to gravity
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