

1

Excited bound states and their role in Dark Matter production

Tobias Binder 10th September 2024

Based on: arXiv:2308.01336

In collaboration with: Mathias Garny, Jan Heisig, Stefan Lederer and Kai Urban

Particle production in the early Universe, CERN

[Mitridate *et al.* 17]

Minimal Dark Matter examples

 \int^{V^a} $\mathrm{DM}_{i'}$ DM_i (See also [Hisano et al. 03,05,06, . . . Harz & Petraki 18]) DM_i $DM_{i'}$ Fermion triplet with Y = 0 ('wino') Fermion quintuplet with Y = 00.20 0.20 Perturbative Perturbati_{Vi} × Sommette 0.15 0.15 $\Omega_{
m DM}\,h^2$ $\Omega_{\rm DM} \, h^2$ 0.10 0.10 bound sta 0.05 0.05 0.00 0.00 0.5 2.5 0.0 1.0 1.5 2.0 3.0 3.5 0 2 8 10 12 14 4 6 DM mass in TeV DM mass in TeV

Classification of bound-state formation

Leading multipole: $\langle \psi_{nl} | r^X | \psi_{\mathbf{p}} \rangle$

- Monopole (X=0) [Oncala & Petraki 19,21]
- Dipole (X=1):
 - Wino, Minimal DM, Colored co-annihilation [Ellis et al. 15, Mitridate et al. 17, Harz & Petraki 18, ...]
 - Dark U(1), SU(N) [Harling et al. 14, ..., Asadi 21, Biondini et al. 23]

• Quadrupole (X=2) [Wise et al. 14,16, Petraki et al. 15, Biondini 21,22]

This talk: highly excited bound states in perturbative, unbroken gauge theories (dipole).

Bound-state formation in U(1) gauge theory

 $\mathcal{S}(\chi\bar{\chi}) \to \mathcal{B}(\chi\bar{\chi})_{nl} + \gamma$

 $(\sigma v)_{nl} = rac{4lpha}{3} \Delta E^3 |ig \langle \psi_{nl} | \, {f r} \, | \psi_{f p}
angle \, |^2$

(e.g. hydrogen, (dark) positronium, complex scalars)

- Up to half a million bound states: all n < 1000, l < n - 1.
- Confirm Kramer's logarithm within expected error as a check:

$$\sum_{n,\ell} (\sigma v)_{n\ell} \simeq \frac{32\pi}{3\sqrt{3}} \frac{\alpha^2}{\mu^2} \frac{\alpha}{v} [\log(\alpha/v) + \gamma_E], \text{ for } v \ll \alpha.$$

Bound-state formation in SU(3) gauge theory

- $3\otimes \bar{3}=1\oplus 8$
- $\mathcal{S}(\chi\bar{\chi})^8 \to \mathcal{B}(\chi\bar{\chi})^1_{nl} + g$

 $(\sigma v)_{nl} = \frac{C_F}{N_c^2} \frac{4\alpha}{3} \Delta E^3 |\langle \psi_{nl}^1 | \, \mathbf{r} \, | \psi_{\mathbf{p}}^8 \rangle \, |^2$

(e.g. quarkonium, squark)

- Assume constant coupling
- Low velocity scaling much stronger:

 $\sum_{nl} (\sigma v)_{nl} \propto v^{-4}$ for $v \ll \alpha$

 Raises concerns about partial waveunitarity violation

Bound-state formation in SU(3) gauge theory

 $\mathbf{3}\otimes\bar{\mathbf{3}}=\mathbf{1}\oplus\mathbf{8}$

 $\mathcal{S}(\chi\bar{\chi})^8 \to \mathcal{B}(\chi\bar{\chi})^1_{nl} + g$

 $(\sigma v)_{nl} = \frac{C_F}{N_c^2} \frac{4\alpha}{3} \Delta E^3 |\langle \psi_{nl}^1 | \mathbf{r} | \psi_{\mathbf{p}}^8 \rangle|^2$

(e.g. quarkonium, squark)

Unitarity condition:

 $\sum_{nl} (\sigma v)_{nl}^{l'} \le (\sigma v)_{\text{uni.}}^{l'} = \frac{\pi (2l'+1)}{\mu^2 v}$

 Observe partial-wave unitarity violation in the perturbative regime

Partial wave unitarity violation in SU(N)

- We observe partial wave unitarity violation in SU(N) gauge theories for perturbatively small couplings
- More generally: if the initial state is less attractive than the final state, partial wave unitarity will be violated at a finite velocity
- Mechanism behind unitarization unknown

In the following, focussing on the regime consistent with perturbativity and unitarity

Effective cross section

 Effective cross section encodes complex interplay between annihilation, boundstate formation, excitation, bound-state decay and reverse processes

Effective cross section: Dark QED sector

- Includes about 5000 bound states and all possible dipole transitions (~10^6).
- Dark QED indeed freezes out.
- Upper bound on DM mass consistent with perturbative unitarity is 0.2 PeV.

Effective cross section: Dark QCD sector

- s-wave bound states only, dominant decay mode
- Running coupling effects lead to "eternal depletion" in the perturbative regime, i.e. no freeze-out
- Slope increases with N in SU(N)

SM SU(3) and U(1) charged mediator model

"t-channel" simplified toy model:

 $\mathcal{L} \supset \lambda_{\chi} \tilde{q} \bar{q}_R \chi + h.c.$

- \tilde{q} : scalar mediator, carries SM electric and color charge
- q_R : right handed SM quark
- χ : Majorana Fermion Dark Matter

Possible DM production scenarios:

$$\begin{split} \Gamma^{\chi \to \tilde{q}}_{\rm conv} \gg H(m_{\tilde{q}}) & {\rm coannihilation} \,, \\ \Gamma^{\chi \to \tilde{q}}_{\rm conv} \sim H(m_{\tilde{q}}) & {\rm conversion-driven} \,, \\ \Gamma^{\chi \to \tilde{q}}_{\rm conv} \ll H(m_{\tilde{q}}) & {\rm superWIMP/freeze-in} \,. \end{split}$$

SuperWIMP regime

- superWIMP mechanism: late decay of mediator into DM, final DM yield independent of actual size of the conversion rate.
- Continous depletion of mediator yield from bound state effects.
- → introduces a *dependence* of the DM yield on the conversion rate as a novel feature.

Constraints

- DM produced relativistically from heavy mediator decay
- DM can be "too hot", i.e., substructure can be erased by free-streaming effect
- Substructure probed by Ly-alpha observations
- Bound state effects open up parameter space
- Corrections to the DM mass up to an order of magnitude

Summary & Conclusion

- Highly excited bound states can play an important role for predicting the DM relic abundance precisely.
- Can lead to "eternal freeze-out" in unbroken non-abelian gauge theories
- SuperWIMP regime:

- *novel feature*: bound state effects can introduce a dependence of the DM yield on the mediator lifetime

- DM mass corrections: by up to an order of magnitude
- unitarization of bound-state formation in unbroken non-Abelian gauge theories within the regime of perturbatively small couplings (?)

Colored co-annihilation examples

- I.e., co-annihilating partner charged under SM SU(3)
- Longe-range effects impact $(\Delta m_{\chi}, m_{\chi})$ plane
 - Squark (scalar triplet)
 - Gluino (fermion octet)
- 🕨 + Higgs
 - Additional attractive contribution
 - (squark) octet can be bounded
- Non-perturbative regime

 (for mass splitting below confinging scale)

[Ellis *et al.* 15, Liew & Luo 16, Mitridate *et al.* 17]

[Harz & Petraki 18,19]

[Gross et al. 18, Fukuda & Luo & Shirai 18]

DM production scenarios

"t-channel" simplified model:

 $\mathcal{L} \supset \lambda_{\chi} \tilde{q} \bar{q}_R \chi + h.c.$

DM production can be classified into:

$\Gamma_{\rm conv}^{\chi \to \tilde{q}} \gg H(m_{\tilde{q}})$	$\operatorname{coannihilation},$
$\Gamma_{\rm conv}^{\chi \to \tilde{q}} \sim H(m_{\tilde{q}})$	${\rm conversion-driven},$
$\Gamma_{\rm conv}^{\chi \to \tilde{q}} \ll H(m_{\tilde{q}})$	$\operatorname{superWIMP}/\operatorname{freeze-in}$.

$$\begin{aligned} \frac{\mathrm{d}Y_{\tilde{q}}}{\mathrm{d}x} &= \frac{1}{3H} \frac{\mathrm{d}s}{\mathrm{d}x} \left[\frac{1}{2} \left\langle \sigma_{\tilde{q}\tilde{q}^{\dagger}} v \right\rangle_{\mathrm{eff}} \left(Y_{\tilde{q}}^{2} - Y_{\tilde{q}}^{\mathrm{eq}\,2} \right) \end{aligned} \tag{19} \\ &+ \left\langle \sigma_{\chi\tilde{q}} v \right\rangle \left(Y_{\chi} Y_{\tilde{q}} - Y_{\chi}^{\mathrm{eq}} Y_{\tilde{q}}^{\mathrm{eq}} \right) + \frac{\Gamma_{\mathrm{conv}}^{\tilde{q} \to \chi}}{s} \left(Y_{\tilde{q}} - Y_{\chi} \frac{Y_{\tilde{q}}^{\mathrm{eq}}}{Y_{\chi}^{\mathrm{eq}}} \right) \right], \end{aligned} \\ \frac{\mathrm{d}Y_{\chi}}{\mathrm{d}x} &= \frac{1}{3H} \frac{\mathrm{d}s}{\mathrm{d}x} \left[\left\langle \sigma_{\chi\chi} v \right\rangle \left(Y_{\chi}^{2} - Y_{\chi}^{\mathrm{eq}\,2} \right) \right. \tag{20} \end{aligned} \\ &+ \left\langle \sigma_{\chi\tilde{q}} v \right\rangle \left(Y_{\chi} Y_{\tilde{q}} - Y_{\chi}^{\mathrm{eq}} Y_{\tilde{q}}^{\mathrm{eq}} \right) - \frac{\Gamma_{\mathrm{conv}}^{\tilde{q} \to \chi}}{s} \left(Y_{\tilde{q}} - Y_{\chi} \frac{Y_{\tilde{q}}^{\mathrm{eq}}}{Y_{\chi}^{\mathrm{eq}}} \right) \right], \end{aligned}$$

pNREFT [Pineda & Soto 1997, Beneke 98,99, Brambilla et al. 2000, 2005]

$$\mathcal{L} \xrightarrow{m} \mathcal{L}^{\mathrm{NR}} \xrightarrow{\alpha m} \mathcal{L}^{\mathrm{pNR}}$$

Non-relativistic effective field theory for the ultra-soft scale $\alpha^2 m$

potential non-relativistic (pNR) QED:

pNREFT [Pineda & Soto 1997, Beneke 98,99, Brambilla et al. 2000, 2005]

$$\mathcal{L} \xrightarrow{m} \mathcal{L}^{\mathrm{NR}} \xrightarrow{\alpha m} \mathcal{L}^{\mathrm{pNR}}$$

Non-relativistic effective field theory for the ultra-soft scale $\alpha^2 m$

potential non-relativistic (pNR) SU(N) in the weakly coupled regime:

$$\begin{split} \boldsymbol{R} \otimes \bar{\boldsymbol{R}} &= \mathbf{1} \oplus \boldsymbol{adj} \oplus \cdots \\ \mathcal{L}_{\text{pNREFT}} \supset \int \mathrm{d}^{3}\boldsymbol{r} \operatorname{Tr} \left[\mathrm{S}^{\dagger}(i\partial_{0} - H_{s})\mathrm{S} + \mathrm{Adj}^{\dagger}(iD_{0} - H_{\mathrm{adj}})\mathrm{Adj} \\ &- V_{A}(\mathrm{Adj}^{\dagger}\boldsymbol{r} \cdot \boldsymbol{g}\boldsymbol{E}\mathrm{S} + \mathrm{h.c.}) - \frac{V_{B}}{2}\mathrm{Adj}^{\dagger}\{\boldsymbol{r} \cdot \boldsymbol{g}\boldsymbol{E}, \mathrm{Adj}\} + \cdots \right]. \end{split}$$
 Included, e.g. [Binder et al. 2021]

e.g. quarkonium, squark:

 $3 \otimes \bar{3} = 1 \oplus 8 \qquad \qquad \mathcal{S}(\chi \bar{\chi})^8 \to \mathcal{B}(\chi \bar{\chi})^1_{nl} + g \qquad \qquad (\sigma v)_{nl} = \frac{C_F}{N_c^2} \frac{4\alpha}{3} \Delta E^3 |\langle \psi_{nl}^1 | \, \mathbf{r} \, | \psi_{\mathbf{p}}^8 \rangle|^2$

Positronium example

Bound-state decay and Sommerfeld enhancement:

$$\begin{split} \Gamma_n &= (\sigma v)_0 \times |\psi_n(r=0)|^2 & \text{Pirenne \&} \\ \text{Wheeler 1946} \\ (\sigma v) &= (\sigma v)_0 \times |\psi_v(r=0)|^2 \\ &\propto (\sigma v)_0 \left(\alpha/v\right), \text{ for } v \lesssim \alpha. \end{split} \quad \begin{array}{l} \text{Sakharov 1948} \\ \text{(Sommerfeld 1931)} \end{array} \end{split}$$

Bound-state formation (recombination):

$$\begin{split} (\sigma v)_{nl} &= \frac{4\alpha}{3} |\langle \psi_{nl} | \mathbf{r} | \psi_v \rangle |^2 \Delta E^3 \\ &\sim 3 \times \text{annihilation, for } v \lesssim \alpha. \\ \text{(and n=1,l=0.)} \end{split}$$

(originates from the Electric Dipole Operator "gr.E", see e.g. Landau&Lifshitz)

Wino Dark Matter example

- Majorana Fermion, SU(2) Triplet, zero Hypercharge ("most minimal WIMP")
- Sommerfeld-enhanced annihilation allows for heavier Wino masses
- ID signal mass sensitive, see e.g.

[Rinchiuso, Slatyer et al. 20]

[Hisano et al. 03,05,06]

General dipole transition matrix elements

• "gr.E" leads to matrix elements of the form:

$$\langle \psi_f | \mathbf{r} | \psi_i \rangle = \int \mathrm{d}^3 r \; \psi_f^{\star}(\mathbf{r}) \; \mathbf{r} \; \psi_i(\mathbf{r}).$$

$$\mathbf{V}_{i/f} = -\frac{\alpha_{i/f}^{\mathrm{eff}}}{r}$$

- E.g.: (chromo-) electric dipole transitions of pairs in unbroken U(1) and SU(N) gauge theories
- Analytic result in terms of recurrence relations* allows for efficient and numerically stable evaluation.
- Tested against know results for low excitations

*) in QED limit consistent with [W. Gordon, Zur Berechnung der Matrizen beim Wasserstoffatom, Annalen der Physik 394 (1929)]