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Motivation &

® First order phase transitions in the early universe

GW signal...

® EW baryogenesis

Dynamics of the expanding bubble...

® Higgs vacuum metastability

Wall is coming?..

® Experimental tests of nucleation theory

A. Zenesini et al. False vacuum decay via bubble formation in ferromagnetic superfluids, Nature Physics 20, 558-563 (2024)



https://www.nature.com/nphys

Methods (

Consider vacuum decay at finite temperature via classical thermal jumps of the field over the barrier. V( }9)
i.e. at temperatures high (classical regime) but not too high (exponential — Boltzmann — suppression)
The decay happens through the formation of special thermodynamic fluctuation: critical bubble. A

@ Euclidean (equilibrium) approach

@ Gibbs 1875 — first discussion of the critical bubble, its energy in the thin-wall approximation \
L Wigner 1937 — Transition State Method for chemical reactions: saddle point, negative mode, zero modes
@ Langer 1969 — Classical-statistical theory of metastability: many d.o.f. + external heat bath
@ Affleck 1980 — Quantum-statistical theory of metastability: 1 d.o.f., no external heat bath
‘ Linde 1982 — Decay of false vacuum at finite temperature: field theory, different regimes
Growth rate of the critical bubble’s unstable mode . / Free energy around the false vacuum
r w_ ImF
Decay probability per unit time per unit vqume/v E— T 7.
N
N Volume
Temperature

To test the predictions of the Euclidean approach and to study dynamical properties of the phase transition we use

@ Real-time simulations

Cd Grigoriev, Rubakov, Shaposhnikov — Sphaleron transitions, Hamiltonian dynamics
@ Alford, Feldman, Gleiser — Vacuum decay, Langevin dynamics
@ Gould, Moore, Rummukainen — Vacuum decay, “multi-canonical sampling” + real-time evolution
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Simplest Setup (

0.6)2 m2d2 Ao
Scalar field theory in 1+1 dimensions: S = /dt dx (—( “;b) — 2¢ + jf '
/W ¢
]
- - 4m’ 6m* | By g7 0 Wy
® Euclidean theory predicts: £, =——, I'p= e Ev/ 2
31 ™ 27T =
barrier (critical bubble) energy TV

@ We want to measure the decay rate (among other things) in “first-principle” classical lattice simulations

We prepare a suite of simulations with the initial thermal Rayleigh-Jeans spectrum:

Fourier modes of the field and momentum
W v
1Py =TI, (|%|°)=T
(1% =TI, (|5]*) =

2 _ 2 2 _
Qj = 2(1 — cos kja)/a +mg k] = 2xj/L

AN N -
2 EZ lattice spacing box size v
My, = M- =177
2m : 2
thermal correction to the mass, < m ¢
g
17
...and evolve them until they decay (or simulation times out). ‘3{

0.0 0.2 0.4 0.6 0.8 1.0 <_We checked that this is an equilibrium state by evolving the FV ,/ ‘.
k theory with the stable potential using the Langevin equation. oo
Measurement of the dispersion relation in & %
the theory with the stable potential &




What does it mean “decay rate”?

® Introduce survival probability P;,;.,(t)

For decays obeying the exponential distribution, it follows the law:

(we exclude early-time transients)

In Pygypyp(t) = const — 'L - ¢
AN

This is decay rate

Euclidean Theory

1-10° 2-10° 3-10°




First surprise

® Introduce survival probability P;,;.,(t)

For decays obeying the exponential distribution, it follows the law:

(we exclude early-time transients)

In Pygypyp(t) = const — 'L - ¢
AN

This is decay rate

Simulation vs Euclidean Theory

\

1-103 2-10° 3-10°
t

@® Decay rate found in simulations is smaller than the Euclidean prediction

@ Itis, moreover, time-dependent, getting even smaller with time




What does it mean “thermal”? Q)

@® For the Hamiltonian evolution, it means the following:

3 A
e Long modes Al Short modes
e
|7
Relevant for the decay_/J Background for the long modes
u -
A8 =
Relevant
sub-system Thermostat

But thermalisation in the theory is very inefficient: for modes with @ ~ m ~ (bubble size)_l,
the thermalisation time is

(27)? . AT .
tip ~ ———, T=—<x1 (due to 2 — 4 and 3 —» 3 scattering processes)
T4 m?3
' ", 4 %0
VP /('; $3 P :a“




What does it mean “thermal”?

@® For the Hamiltonian evolution, it means the following:

3 Al
e Long modes Al Short modes
e
|7
Relevant for the decay_/J Background for the long modes
u -
A8 =
Relevant
sub-system Thermostat

But thermalisation in the theory is very inefficient: for modes with @ ~ m ~ (bubble size)_l,
the thermalisation time is

(27)? . AT .
= T=—<x1 (due to 2 - 4 and 3 —» 3 scattering processes)
T

m3

tih ~

® Compare this with the decay time: ,,. ~ (T'L)~!

In our simulations it happens that 7, > t,,. (hardly relevant for cosmology, but can be relevant for experiments)

This leads to the interesting effect.
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Classical Zeno effect s

@® Because of inefficient thermalisation, the initial power contained in the long modes
is preserved during the simulation.

@ The configuration which, due to a statistical fluctuation, has a higher initial long-
mode power decays faster. The one with lower power lives longer.

—> Statistical properties of the ensemble change with time: long modes cool down.

Effective temp. of long modes
for simulations whose lifetime is longer than t

0.097 e —all-modes %

o modes with k< 2m

%?“*Hmm
0.098 {{%{TT +H

—e—
—e—
——
——

0.096 modes-with-k-<-m

0 500 1000 1500 2000 2500
t

® Effective temp. of long modes drops by a few per cent during the run: enough to visibly suppress the decays.
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Classical Zeno effect e’

@® Because of inefficient thermalisation, the initial power contained in the long modes
is preserved during the simulation.

@ The configuration which, due to a statistical fluctuation, has a higher initial long-
mode power decays faster. The one with lower power lives longer.

—> Statistical properties of the ensemble change with time: long modes cool down.

Effective temp. of long modes
for simulations whose lifetime is longer than t
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@ Effective temp. of long modes drops by a few per cent during the run: enough to visibly suppress the decays.

@ Decay is a non-Markovian process (in this regime).

~
[

CL\' The longer we observe the system, the less chance it has to decay in the future: classical Zeno effect.

@ To find the unbiased rate, we extrapolate the slope of the survival probability curve to zero.

™.




Second surprise

® We measure the (unbiased) decay rate at different temps. and fit with the formula (recall that I'; = A exp(—E,/T))

1 B < critical bubbl
lnF(T):—ilnT—l—lnA—f critical bubble energy

T prefactor (with the zero mode excluded)
from the zero mode in the prefactor
One can measure A and B separately, using the ratio I'(T")/I'(T) to find B, with some reference temp. 7

Or one can make the 2-parameter fit, the result is the same (within the errorbars).

IN(F(T)/T(Tx)) ASIMIA

2 ¢ data 0.18

— fit -
1 = = theory 0.16T
\}\ o - T ! ¢
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@® Critical bubble energy agrees with the Euclidean theory (<2% error bar)

® The measured prefactor is smaller by a factor ~8.

? Something wrong with thermalisation again? Violation of thermal equilibrium near the critical bubble?
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More evidence: Langevin evolution

We can reduce artificially the thermalisation time by coupling the system to an external heat bath.
+np—¢"+mip—Ap>=¢
(E(6,x)) =0, (&, )&, x)) = 20T — 1')6(x — x7)
=Pty ~n

Noise and dissipation change the dynamics of vacuum decay.
They don’t change the critical bubble.

Simulation at zero vs non-zero noise (1 = 10™%m)
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® No Zeno effectaslongasy 2 I'L

@ Decay rate increases, but still below the Euclidean bound




Langevin dynamics: decay rate Q)

We observe the following behavior:

® As dissipation increases, I increases as well. It reaches maximum at 7 ~ 3 - 10~ !m,
then starts decreasing due to over-damping.

@ T tends to increase when T goes down.

Decay rate at various dissipation and temperature

Langer’s classical-statistical theory




Violation of equilibrium condition Y,

In Physical Chemistry, the analog of Euclidean Theory is Transition State Theory (TST).
Hanggi, Talkner, Borkovec, Rev.Mod.Phys. 62 (1990)

TST deals with particles (one or few d.o.f.) in the external heat bath, n > 0.

It is known that TST is violated if there is no equilibrium around the barrier.
The following condition must be satisfied:

> o 1
n E,

We can generalise this condition to Langevin dynamics of field theory.

This is done by careful examination of Langer’s work.

For the Hamiltonian dynamics of field theory, we suggest the following condition:

All our current and future results are consistent with it.
Effective free energ of the critical bubble
/ y

Fb

t -
th ~> o T

@ It is generally violated for weakly-coupled theories with one coupling (one field)

@ In theories with many fields, it must be examined on a case-by-case basis.




Dynamics of vacuum decay

When equilibrium is violated, interesting features appear in the field evolution prior to the decay.

At small dissipation, we observe a population of nonlinear waves with ® < m — oscillons.

They disappear when n > 0.1m and the system evolves due to the stochastic terms.
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Dynamics of vacuum decay | T,

In the Hamiltonian dynamics, every critical bubble is preceded by an oscillon.
Johnson, Pirvu, Sibiryakov, 2312.13364

We can track its trajectory.
Thanks to Dalila’s smart numerical routine.

Stacking many oscillons together, we get the average oscillonic precursor to the critical bubble:
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In our system, the presence of oscillons indicate violation of thermal equilibrium near the barrier. LV a |
’/ 2/‘ .
Thus, they are correlated with the diminishing decay rate. [ g"ffgv

But how deep is this correlation?..
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Discussion A

® We also measured the critical bubble profile. It agrees with the Euclidean prediction. 2408.06411

No classical thermal corrections to the critical bubble in 1+1.

24 XX XXXXX

® We have repeated the measurements in theories of many scalar fields:
one decaying ¢ and N spectators — explicit heat bath — generating the effective (thermal) potential for ¢.

Varying the couplings, we managed to get fast thermalisation and recover the Euclidean decay rate.

The critical bubble shape agrees with the thermal effective potential for ¢ (i.e. the Euclidean
calculation) even if there is no fast thermalisation.

® We are now studying properties of the oscillonic precursors...

Do they correlate in space? Can we tune them to delay the phase transition?
Vacuum decay due to collisions of oscillons?

® Our results are not directly applicable to sphaleron transitions (or production&collisions of kinks)

But they suggest that there might be some interesting non-equilibrium dynamics associated with them.

® We need to compute “analytically” the prefactor in the decay rate for the Hamiltonian dynamics




backup slides




Thermalisation time (

We perform the numerical experiment estimating the thermalisation time of long modes
in the Hamiltonian system.

(|@]%) Tt
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Initial and final spectra Effective temp. of long modes (k < m,

blue) vs temp. of all modes (red)

The result agrees with the theoretical estimate 15, ~
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Thermalisation with external heat bath ( \foj

=

We perform the numerical experiment estimating the thermalisation time of long modes
with the Langevin evolution.

Tet A=10"3 Tett A=10"2
0.12 4 012 Ll L
0.10 MMWWW i 0.10
0.08 Vil 0.08 -
0.06 0.06 @
0.047 | 0.04
102 10 102 103
t t

Effective temperature of long modes (k < m, blue) and the
temperature of the ensemble (kK > m, red)

-1

The result agrees with the estimate 7,, ~ 7




Box size and lattice spacing

In simulations, we take L = 100 and a ~ 0.01 (in units of mass).

The plots below demonstrate insensitivity of the decay rate to L and a.

InI’ - A A .
T=01,7=0 n 1’ T=01,7=0
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L a
We use this to put the upper bound on the systematic error of the decay rate measurement.
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Accuracy of numerical scheme A -,

Hamiltonian dynamics

We use the 4th order pseudo-spectral, operator-splitting scheme.

The plots below show that it is enough to take i/a ~ 0.8 to achieve the relative energy non-
conservation < 1076,
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Relative energy variation Two decaying configurations evolved
from the same initial state, with
hla =04,0.8.
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Accuracy of numerical scheme ( )
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Langevin dynamics

We use the 3rd strong order pseudo-spectral, operator-splitting scheme. Q2
2.4 -
We took it from [Telatovich, Li, 1706.04237] but corrected their mistake. 55 /////
// /‘/
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Langevin vs Hamiltonian evolution

Let’s make the following numerical experiment.

® Evolve the ensemble with non-zero 77 for t > 5! so that all surviving configurations reach
equilibrium with the heat bath.

@® Decouple the ensemble from the heat bath by setting 7 = 0.

Langevin vs Hamiltonian evolution (7 = 107?)
0.00

—— Langevin

-0.01 \\ — — Hamiltonian
c —0.02 \
3 N\
Q. _
c 0.03 \
—0.04

‘l—-t——._._‘
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N
M — e

—0.05
—200

—-100 0 100 200 300 400

The decay rate changes abruptly to the one that we got before for the Hamiltonian evolution.

Thus, the deviation of the rate from equilibrium is really due to the field dynamics near the barrier.
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More observables w

® Shape of the critical bubble ¢, (x)

Should we compute the bubble using the bare potential or an effective potential?

If effective, which fields to include and when?

® Dynamics of bubble nucleation

Euclidean theory tells us little about how the critical bubble actually forms out of thermal fluctuations.

This dynamics is quite interesting: bubble velocities, oscillonic precursors...

Gleiser, Kolb... hep-ph/0409179, 0708.3844
Johnson, Pirvu, Sibiryakov, 2312.13364




Critical bubble profile AT,

Theory Simulation
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Take many simulations, synchronise them in space and time, produce the average.




Critical bubble profile
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Take many simulations, synchronise them in space and time, produce the average, pinpoint the critical bubble.

We employ two different reconstruction routines. They agree with each
other and with the Euclidean prediction.

1.4
1.2
1.0
¢ 0.8
0.6
0.4
0.2
0.0

Reconstruction

method 1

method 2

------ theory

“thermal critical bubble”:
m — My, in @p(x)

e

—4 —2 0

No surprise here: the critical bubble is determined by the bare potential; fluctuations contribute to the prefactor.

G Things can be different with many fields!




