

Gravitational Waves from Hidden Sectors

Particle Production in the Early Universe — CERN, Sept. 9-13, 2024

Eric Madge (IFT-UAM/CSIC)

based on: Breitbach et al., JCAP **07** (2019) 007 Banerjee et al., PRD **104** (2021) 5 Madge et al., SciPost Phys. **12** (2022) 5, 171 Madge et al., JHEP **10** (2023) 171 Caprini et al. (LISA CosWG), arXiv:2403.03723 [astro-ph.CO]

GWs from Hidden Sectors

cosmological sources

inflation

phase transitions

cosmic strings

GWs from Hidden Sectors

cosmological sources

inflation

bosonic instabilities thermal fluctuations

astrophysics binary mergers

exotic objects

phase transitions

cosmic strings

domain walls

GWs from Hidden Sectors

cosmological sources

inflation

bosonic instabilities thermal fluctuations

astrophysics binary mergers

exotic objects

phase transitions

cosmic strings

domain walls

SGWB from Primordial Sources

peak frequency

set by characteristic scale f_*^{-1} at production: $f_*^{-1} \lesssim H_*^{-1}$ $f_0 \sim \frac{a_0}{a_*} H_* \frac{f_*}{H_*}$ $\sim 0.1 \,\mathrm{mHz} \left(\frac{T_*}{1 \,\mathrm{TeV}}\right) \left(\frac{f_*}{H_*}\right)$

SGWB from Primordial Sources

peak frequency

set by characteristic scale f_*^{-1} at production: $f_*^{-1} \lesssim H_*^{-1}$ $\int_{0}^{1} \int_{0}^{1} \int_{0}^{$

peak amplitude

1. Cosmological Phase Transition

- 2. Bosonic Instabilities
 - 3. Conclusions

- thermal corrections typically restore spontaneously broken symmetries at high temperatures
 - \implies symmetry breaking phase transition
- can be crossover or first-order

- thermal corrections typically restore spontaneously broken symmetries at high temperatures
 - \implies symmetry breaking phase transition
- can be crossover or first-order

- thermal corrections typically restore spontaneously broken symmetries at high temperatures
 - \implies symmetry breaking phase transition
- can be crossover or first-order

GW production:

1. vacuum bubble collisions

- thermal corrections typically restore spontaneously broken symmetries at high temperatures
 - \implies symmetry breaking phase transition
- can be crossover or first-order

GW production:

- 1. vacuum bubble collisions
- 2. sound waves collisions

- thermal corrections typically restore spontaneously broken symmetries at high temperatures
 - \implies symmetry breaking phase transition
- can be crossover or first-order

GW production:

- 1. vacuum bubble collisions
- 2. sound waves collisions
- 3. turbulence and vortical motion

Gravitational Wave spectrum obtained from numerical simulations and analytical arguments, expressed in terms of few parameters:

Gravitational Wave spectrum obtained from numerical simulations and analytical arguments, expressed in terms of few parameters:

strength/
energy budget

$$\alpha = \frac{\rho_{\rm vac}}{\rho_{\rm rad}^*} \simeq \frac{\Delta V_{\rm eff}}{\rho_{\rm rad}^*}$$

$$\begin{array}{ll} \mbox{critical action:} & S_{\rm crit} = \frac{1}{T} \int \! {\rm d}^3 x \left[\frac{1}{2} (\nabla \phi)^2 + V_{\rm eff}(\phi,T) \right] \\ \mbox{nucleation rate:} & \Gamma(T) = A(T) \, \exp \Big[- S_{\rm crit}(T) \Big] \\ \end{array}$$

Gravitational Wave spectrum obtained from numerical simulations and analytical arguments, expressed in terms of few parameters:

strength/ energy budget characteristic scale $\beta = \dot{\Gamma}/\Gamma$

$$\begin{aligned} \alpha &= \frac{\rho_{\rm vac}}{\rho_{\rm rad}^*} \simeq \frac{\Delta V_{\rm eff}}{\rho_{\rm rad}^*} \\ \frac{\beta}{H_*} &= \left[T \frac{dS_{\rm crit}}{{\rm d}T} \right]_{T=T_*} \end{aligned}$$

$$\begin{array}{ll} \mbox{critical action:} & S_{\rm crit} = \frac{1}{T} \int \! {\rm d}^3 x \left[\frac{1}{2} (\nabla \phi)^2 + V_{\rm eff}(\phi,T) \right] \\ \mbox{nucleation rate:} & \Gamma(T) = A(T) \, \exp \left[- S_{\rm crit}(T) \right] \end{array}$$

Gravitational Wave spectrum obtained from numerical simulations and analytical arguments, expressed in terms of few parameters:

strength/ energy budget characteristic scale $\beta = \dot{\Gamma}/\Gamma$ transition

temperature

$$\begin{split} \alpha &= \frac{\rho_{\text{vac}}}{\rho_{\text{rad}}^*} \simeq \frac{\Delta V_{\text{eff}}}{\rho_{\text{rad}}^*} \\ \frac{\beta}{H_*} &= \left[T \frac{dS_{\text{crit}}}{dT} \right]_{T=T_*} \\ T_* &\simeq T_n \quad \left(\Gamma(T_n) \simeq [H(T_n)]^4 \right) \end{split}$$

$$\begin{array}{ll} \mbox{critical action:} & S_{\rm crit} = \frac{1}{T} \int \! {\rm d}^3 x \left[\frac{1}{2} (\nabla \phi)^2 + V_{\rm eff}(\phi,T) \right] \\ \mbox{nucleation rate:} & \Gamma(T) = A(T) \, \exp \left[- S_{\rm crit}(T) \right] \\ \end{array}$$

Gravitational Wave spectrum obtained from numerical simulations and analytical arguments, expressed in terms of few parameters:

strength/ energy budget characteristic scale $\beta = \dot{\Gamma}/\Gamma$ transition temperature $\alpha = \frac{\rho_{\text{vac}}}{\rho_{\text{rad}}^*} \simeq \frac{\Delta V_{\text{eff}}}{\rho_{\text{rad}}^*}$ $\frac{\beta}{H_*} = \left[T \frac{dS_{\text{crit}}}{dT}\right]_{T=T_*}$ $T_* \simeq T_n \quad \left(\Gamma(T_n) \simeq [H(T_n)]^4\right)$

also: bubble dynamics:

wall velocity, efficiency factors, etc.

$$\begin{array}{ll} \mbox{critical action:} & S_{\rm crit} = \frac{1}{T} \int \! {\rm d}^3 x \left[\frac{1}{2} (\nabla \phi)^2 + V_{\rm eff}(\phi,T) \right] \\ \mbox{nucleation rate:} & \Gamma(T) = A(T) \, \exp \left[- S_{\rm crit}(T) \right] \end{array}$$

Decoupled Hidden Sectors

 ${\rm I\!\!P}$ sub-MeV hidden sectors contribute to the effective number of neutrino species $N_{\rm eff}$

$$\rho_{\rm rad} = \frac{\pi^2}{30} \sum_i g_i T_i^4 = \left[1 + \frac{7}{8} \left(\frac{4}{11} \right)^{\frac{4}{3}} N_{\rm eff} \right] \rho_{\gamma}$$

95% CL SM: 3.046 BBN $2.95^{+0.56}_{-0.52}$ CMI $+H_0$ Planck - 1807.06209 2.5 3.0 3.5 $N_{\rm eff}$

p at $T \lesssim \text{MeV}$:

additional relativistic DOFs in thermal equilibrium with photons are excluded

Decoupled Hidden Sectors

 ${\rm I\!\!P}$ sub-MeV hidden sectors contribute to the effective number of neutrino species $N_{\rm eff}$

$$\rho_{\rm rad} = \frac{\pi^2}{30} \sum_{i} g_i T_i^4 = \left[1 + \frac{7}{8} \left(\frac{4}{11} \right)^{\frac{4}{3}} N_{\rm eff} \right] \rho_{\gamma}$$

95% CL SM: 3.046 BBN H_0 Planck - 1807.06209 2.5 3.0 3.5 $N_{\rm eff}$

p at $T \lesssim \text{MeV}$:

additional relativistic DOFs in thermal equilibrium with photons are excluded

⇒ sub-MeV hidden sector must be colder than SM

Hidden Sector Cosmology

completely decoupled

Hidden Sector Cosmology

completely decoupled

6 / 16

Phase Transitions in Secluded Hidden Sectors

Breitbach et al. (JCAP, 2019) Fairbairn et al. (JHEP, 2019)

temperature ratio:
$$\xi_h \equiv \frac{T_h}{T_\gamma}$$

• $\alpha \simeq \alpha_h \xi_h^4$ $\alpha_h \equiv [\alpha]_{\xi_h=1}$
• $f_{\text{peak}}^0 \sim T_{n,\gamma} = \frac{T_{n,h}}{\xi_h}$
• $\frac{\beta}{H} \xi_h$ -independent

Phase Transitions in Secluded Hidden Sectors

Breitbach et al. (JCAP, 2019) Fairbairn et al. (JHEP, 2019)

Sensitivity

8 / 16

Parameter Reconstruction

Caprini et al. arXiv:2403.03723 [astro-ph.Co] Lewicki et al. (JHEP, 2022); Ellis et al. (JHEP, 2023) SGWBinner: Caprini et al. (JCAP, 2019); Flauger et al. (JCAP, 2021)

9 / 16

Bosonic Instabilities

1. Cosmological Phase Transition

- 2. Bosonic Instabilities
 - 3. Conclusions

Machado et al. (JHEP 2019, PRD 2020) Ratzinger et al. (SciPost Phys. 2021)

Misaligment Mechanism

$$\begin{split} \mathcal{L} \supset \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - V(\phi) \\ \implies \qquad \ddot{\phi} + 3H \dot{\phi} + m_a^2 \phi = 0 \end{split}$$

1. $H \gg m_a$: axion pinned by Hubble friction.

Machado et al. (JHEP 2019, PRD 2020) Ratzinger et al. (SciPost Phys. 2021)

Misaligment Mechanism

$$\begin{split} \mathcal{L} \supset \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - V(\phi) \\ \implies \qquad \ddot{\phi} + 3H \dot{\phi} + m_a^2 \phi = 0 \end{split}$$

H ≫ m_a: axion pinned by Hubble friction.
 H ~ m_a: axion starts to roll

Machado et al. (JHEP 2019, PRD 2020) Ratzinger et al. (SciPost Phys. 2021)

Misaligment Mechanism

$$\begin{split} \mathcal{L} \supset \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - V(\phi) \\ \implies \qquad \ddot{\phi} + 3H \dot{\phi} + m_a^2 \phi = 0 \end{split}$$

- 1. $H \gg m_a$: axion pinned by Hubble friction.
- 2. $H \sim m_a$: axion starts to roll
- 3. $H \ll m_a$: axion oscillates

Machado et al. (JHEP 2019, PRD 2020) Ratzinger et al. (SciPost Phys. 2021)

Misaligment Mechanism + coupling to dark photon

$$\mathcal{L} \supset \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - V(\phi) - \frac{1}{4} X_{\mu\nu} X^{\mu\nu} - \frac{\alpha}{4} \frac{\phi}{f_a} X_{\mu\nu} \tilde{X}^{\mu\nu}$$
$$\implies \qquad \ddot{\phi} + 3H\dot{\phi} + m_a^2 \phi = -\frac{\alpha}{f_a} \langle X_{\mu\nu} \tilde{X}^{\mu\nu} \rangle$$

e.g. to deplete axion abundance Agrawal et al. (JHEP, 2018) Kitajima et al. (PLB 2018) or for dark-photon dark-matter Dror et al. (PRD 2019) Co et al. (PRD 2019) Bastero-Gil et al. (JCAP 2019) Agrawal et al. (PLB 2019)

- 1. $H \gg m_a$: axion pinned by Hubble friction.
- 2. $H \sim m_a$: axion starts to roll
- 3. $H \ll m_a$: axion oscillates

 \Rightarrow dark photon production during phase 2 (and 3)

Machado et al. (JHEP 2019, PRD 2020) Ratzinger et al. (SciPost Phys. 2021)

Misaligment Mechanism + coupling to dark photon

$$\mathcal{L} \supset \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - V(\phi) - \frac{1}{4} X_{\mu\nu} X^{\mu\nu} - \frac{\alpha}{4} \frac{\phi}{f_a} X_{\mu\nu} \tilde{X}^{\mu\nu}$$
$$\implies \qquad \ddot{\phi} + 3H\dot{\phi} + m_a^2 \phi = -\frac{\alpha}{f_a} \langle X_{\mu\nu} \tilde{X}^{\mu\nu} \rangle$$

e.g. to deplete axion abundance Agrawal et al. (JHEP, 2018) Kitajima et al. (PLB 2018) or for dark-photon dark-matter Dror et al. (PRD 2019) Co et al. (PRD 2019) Bastero-Gil et al. (JCAP 2019) Agrawal et al. (PLB 2019)

- 1. $H \gg m_a$: axion pinned by Hubble friction.
- 2. $H \sim m_a$: axion starts to roll
- 3. $H \ll m_a$: axion oscillates
 - $\Rightarrow \quad dark \text{ photon production during phase 2 (and 3)}$ $\Rightarrow \quad gravitational wave \text{ emission from dark photons}$

dark photon EoM:
$$X_{\pm}''(\tau,k) + \omega_{\pm}^2(k)X_{\pm}(\tau,k) = 0$$
 $\omega_{\pm}^2(k) = \left(k^2 \mp k \frac{\alpha \phi'(\tau)}{f_a}\right)$

 \blacktriangleright modes with $k < \left|\frac{\alpha \phi'(\tau)}{f_a}\right|$ experience tachyonic instability in one helicity

dark photon EoM:
$$X_{\pm}''(\tau,k) + \omega_{\pm}^2(k)X_{\pm}(\tau,k) = 0$$
 $\omega_{\pm}^2(k) = \left(k^2 \mp k \frac{\alpha \phi'(\tau)}{f_a}\right)$

▶ largest growth for
$$\tilde{k} = \left|\frac{\alpha \phi'(\tau)}{2 f_a}\right|$$
 with $\left|\omega^2(\tilde{k})\right| = \tilde{k}^2$

dark photon EoM:
$$X_{\pm}''(\tau,k) + \omega_{\pm}^2(k)X_{\pm}(\tau,k) = 0$$
 $\omega_{\pm}^2(k) = \left(k^2 \mp k \frac{\alpha \phi'(\tau)}{f_a}\right)$

▶ largest growth for
$$\tilde{k} = \left|\frac{\alpha \phi'(\tau)}{2 f_a}\right|$$
 with $\left|\omega^2(\tilde{k})\right| = \tilde{k}^2$

 ${\ensuremath{\,{\rm \rho}}}$ for oscillating axion: ${\ensuremath{\tilde{k}}} \sim a^{-1/2}$

dark photon EoM:
$$X_{\pm}''(\tau,k) + \omega_{\pm}^2(k)X_{\pm}(\tau,k) = 0$$
 $\omega_{\pm}^2(k) = \left(k^2 \mp k \frac{\alpha \phi'(\tau)}{f_a}\right)$

▶ largest growth for
$$\tilde{k} = \left|\frac{\alpha \phi'(\tau)}{2f_a}\right|$$
 with $\left|\omega^2(\tilde{k})\right| = \tilde{k}^2$

 ${\rm \emph{p}}$ for oscillating axion: $\tilde{k}\sim a^{-1/2}$

 $\Longrightarrow\sim$ energy transfer stops

dark photon EoM:
$$X_{\pm}''(\tau,k) + \omega_{\pm}^2(k)X_{\pm}(\tau,k) = 0$$
 $\omega_{\pm}^2(k) = \left(k^2 \mp k \frac{\alpha \phi'(\tau)}{f_a}\right)$

modes with $k < \left|\frac{\alpha \phi'(\tau)}{f_a}\right|$ experience tachyonic instability in one helicity

largest growth for
$$\tilde{k} = \left|\frac{\alpha \phi'(\tau)}{2f_a}\right|$$
 with $\left|\omega^2(\tilde{k})\right| = \tilde{k}^2$

 ${\rm \emph{p}}$ for oscillating axion: $\tilde{k}\sim a^{-1/2}$

 \implies \sim energy transfer stops

1

dark photon spectrum:

- first tachyonic helicity dominates

11 / 16

[[]Machado et al. (JHEP 2019)]

Gravitational Wave Spectrum

GWs generated at t_* around the time when the tachyonic band closes:

peak frequency:

$$f_{\rm peak} \sim 2\,\frac{\tilde{k}_*}{a_0} \sim 4\,{\rm nHz}\, \left(\frac{\alpha\,\theta}{100}\right)^{\!\!\frac{2}{3}} \!\!\left(\frac{m_a}{10^{-15}\,{\rm eV}}\right)^{\!\!\frac{1}{2}}$$

Gravitational Wave Spectrum

GWs generated at t_* around the time when the tachyonic band closes:

peak frequency:

$$f_{\rm peak}\sim 2\,\frac{\tilde{k}_*}{a_0}\sim 4\,{\rm nHz}\left(\frac{\alpha\,\theta}{100}\right)^{\!\!\frac{2}{3}}\!\!\left(\frac{m_a}{10^{-15}\,{\rm eV}}\right)^{\!\!\frac{1}{2}}$$

peak amplitude:

$$\Omega_{\rm GW}^{\rm peak} \sim \frac{\left(\rho_X^* / f_{\rm peak}^*\right)^2}{\rho_c \ M_{\rm pl}^2} \left(\frac{a_*}{a_0}\right)^4 \sim 10^{-7} \left(\frac{f_a}{M_{\rm pl}}\right)^4 \left(100 \ \frac{\theta^2}{\alpha}\right)^{\frac{4}{3}}$$

Gravitational Wave Spectrum

GWs generated at t_* around the time when the tachyonic band closes:

peak frequency:
$$f_{\text{peak}} \sim 2 \frac{\tilde{k}_{*}}{a_{0}} \sim 4 \text{ nHz} \left(\frac{\alpha \theta}{100}\right)^{\frac{2}{3}} \left(\frac{m_{a}}{10^{-15} \text{ eV}}\right)^{\frac{1}{2}}$$

$$peak \text{ amplitude:}$$

$$\Omega_{\text{GW}}^{\text{peak}} \sim \frac{\left(\rho_{X}^{*}/f_{\text{peak}}^{*}\right)^{2}}{\rho_{c} M_{\text{pl}}^{2}} \left(\frac{a_{*}}{a_{0}}\right)^{4} \sim 10^{-7} \left(\frac{f_{a}}{M_{\text{pl}}}\right)^{4} \left(100 \frac{\theta^{2}}{\alpha}\right)^{\frac{4}{3}}$$

$$10^{-10}$$

$$\frac{\theta = 1, \alpha = 100}{m_{a} = 0.01 \text{ eV}}$$

$$\frac{\theta = 1, \alpha = 100}{m_{a} = 0.01 \text{ eV}}$$

$$\frac{\theta = 1, \alpha = 100}{m_{a} = 0.01 \text{ eV}}$$

$$\frac{\theta = 1, \alpha = 100}{m_{a} = 0.01 \text{ eV}}$$

$$\frac{\theta = 1, \alpha = 100}{m_{a} = 0.01 \text{ eV}}$$

$$\frac{\theta = 1, \alpha = 100}{m_{a} = 0.01 \text{ eV}}$$

$$\frac{\theta = 1, \alpha = 100}{m_{a} = 0.01 \text{ eV}}$$

$$\frac{\theta = 1, \alpha = 100}{m_{a} = 0.01 \text{ eV}}$$

$$\frac{\theta = 1, \alpha = 100}{m_{a} = 0.01 \text{ eV}}$$

$$\frac{\theta = 1, \alpha = 100}{m_{a} = 0.01 \text{ eV}}$$

$$\frac{\theta = 1, \alpha = 100}{m_{a} = 0.01 \text{ eV}}$$

$$\frac{\theta = 1, \alpha = 100}{m_{a} = 0.01 \text{ eV}}$$

$$\frac{\theta = 1, \alpha = 100}{m_{a} = 0.01 \text{ eV}}$$

$$\frac{\theta = 1, \alpha = 100}{m_{a} = 0.01 \text{ eV}}$$

$$\frac{\theta = 1, \alpha = 100}{m_{a} = 0.01 \text{ eV}}$$

$$\frac{\theta = 1, \alpha = 100}{m_{a} = 0.01 \text{ eV}}$$

$$\frac{\theta = 1, \alpha = 100}{m_{a} = 0.01 \text{ eV}}$$

$$\frac{\theta = 1, \alpha = 100}{m_{a} = 0.01 \text{ eV}}$$

$$\frac{\theta = 1, \alpha = 100}{m_{a} = 0.01 \text{ eV}}$$

$$\frac{\theta = 1, \alpha = 100}{m_{a} = 0.01 \text{ eV}}$$

$$\frac{\theta = 1, \alpha = 100}{m_{a} = 0.01 \text{ eV}}$$

$$\frac{\theta = 1, \alpha = 100}{m_{a} = 0.01 \text{ eV}}$$

$$\frac{\theta = 1, \alpha = 100}{m_{a} = 0.01 \text{ eV}}$$

$$\frac{\theta = 1, \alpha = 100}{m_{a} = 0.01 \text{ eV}}$$

$$\frac{\theta = 1, \alpha = 100}{m_{a} = 0.01 \text{ eV}}$$

$$\frac{\theta = 1, \alpha = 100}{m_{a} = 0.01 \text{ eV}}$$

$$\frac{\theta = 1, \alpha = 100}{m_{a} = 0.01 \text{ eV}}$$

$$\frac{\theta = 1, \alpha = 100}{m_{a} = 0.01 \text{ eV}}$$

$$\frac{\theta = 1, \alpha = 100}{m_{a} = 0.01 \text{ eV}}$$

$$\frac{\theta = 1, \alpha = 100}{m_{a} = 0.01 \text{ eV}}$$

$$\frac{\theta = 1, \alpha = 10}{m_{a} = 0.01 \text{ eV}}$$

$$\frac{\theta = 1, \alpha = 10}{m_{a} = 0.01 \text{ eV}}$$

$$\frac{\theta = 1, \alpha = 10}{m_{a} = 0.01 \text{ eV}}$$

$$\frac{\theta = 1, \alpha = 10}{m_{a} = 0.01 \text{ eV}}$$

$$\frac{\theta = 1, \alpha = 10}{m_{a} = 0.01 \text{ eV}}$$

$$\frac{\theta = 1, \alpha = 0.01$$

spectral shape from lattice: [Ratzinger, Schwaller, Stefanek (SciPost Phys. 2022)]

$$\Omega_{\rm GW} = \Omega_{\rm GW}^{\rm peak} \, \mathcal{S}(f/f_{\rm peak}), \qquad \mathcal{S}(x) = x^{0.73} \left[\frac{1}{2} \left(1 + x^{4.2} \right) \right]^{\frac{-4.96 - 0.73}{4.2}}$$

12 / 16

Parameter Constraints

 $[{\sf Ratzinger \ et \ al. \ (SciPost \ Phys., \ 2022)}] \quad \textit{m (eV)$}$

Parameter Constraints

13 / 16

misalignment + large initial velocity \Longrightarrow DM abundance and GW amplitude set by $\dot{\phi}_0$

 \blacktriangleright complex scalar P with $V(P) \sim |P|^4$ and initial displacement $|P| \gg f_a$

- \blacktriangleright complex scalar P with $V(P) \sim |P|^4$ and initial displacement $|P| \gg f_a$
- **p** high-dim. PQ breaking: $\Delta V_{PQ} \propto P^n + h.c. \implies$ angular motion

- \blacktriangleright complex scalar P with $V(P) \sim |P|^4$ and initial displacement $|P| \gg f_a$
- **p** high-dim. PQ breaking: $\Delta V_{PQ} \propto P^n + h.c. \implies$ angular motion
- **P**Q restored as |P| decreases \implies circular motion

- \blacktriangleright complex scalar P with $V(P) \sim |P|^4$ and initial displacement $|P| \gg f_a$
- **p** high-dim. PQ breaking: $\Delta V_{PQ} \propto P^n + h.c. \implies$ angular motion
- **P**Q restored as |P| decreases \implies circular motion
- ⇒ dark photon and graviational wave production

- ▶ high-dim. PQ breaking: $\Delta V_{PQ} \propto P^n + h.c. \implies$ angular motion

1. $\mu_H^2 > 0$

1. $\mu_H^2 > 0$ **2**. $\mu_H^2 < 0$

1. $\mu_H^2 > 0$ **2**. $\mu_H^2 < 0$

3. reheating

Relaxion $V(H,\phi) = \underbrace{\left(\Lambda^2 - g\Lambda\phi\right)}_{\left(H\right)^2} |H|^2 + \lambda |H|^4 - cg\Lambda^3\phi - \Lambda_{\rm br}^4 \frac{|H|^2}{v_H^2} \cos\frac{\phi}{f_\phi}$ $\mu_{H}^{2}(\phi)$ $\mathbf{2}$

- 1. $\mu_H^2 > 0$
- **2**. $\mu_H^2 < 0$
- 3. reheating
- EWPT 4.

Relaxion $V(H,\phi) = \underbrace{\left(\Lambda^2 - g\Lambda\phi\right)}_{H^2} |H|^2 + \lambda |H|^4 - cg\Lambda^3\phi - \Lambda_{\rm br}^4 \frac{|H|^2}{v_H^2} \cos\frac{\phi}{f_\phi}$ $\mu_H^2(\phi)$ $\mathbf{2}$

- 1. $\mu_H^2 > 0$
- **2**. $\mu_H^2 < 0$
- 3. reheating
- EWPT 4.

Relaxion Graham et al. (PRL, 2015) $V(H,\phi) = \left(\Lambda^2 - g\Lambda\phi\right) |H|^2 + \lambda |H|^4 - cg\Lambda^3\phi - \Lambda_{\rm br}^4 \frac{|H|^2}{v_H^2} \cos\frac{\phi}{f_\phi}$ $\mu_H^2(\phi)$ (4)(2) 10^{-12} $\xi = 25$ 1. $\mu_H^2 > 0$ 5th force + stellar cooling **2**. $\mu_H^2 < 0$ $\stackrel{0}{\overset{\circ}{\overset{\circ}{\theta}}}_{is}^{i\theta} 10^{-15}$ 3. reheating SKA (5 yr) 4. EWPT 10^{-21} SKA (20 yr) $\square \mu \text{Ares}$ 10^{-24} 10^{-12} 10^{-10} 10^{-8} 10^{-6} 10^{-2} 10^{-4} 10^{0} $m_{\phi} \, [eV]$ [Banerjee et al. (PRD, 2021] 15 / 16

Conclusions

1. Cosmological Phase Transition

- 2. Bosonic Instabilities
 - 3. Conclusions

Conclusion

Hidden sectors can generate GWs in several ways

The hidden sector can be decoupled

 \implies GW spectrum suppressed: $f_{\text{peak}}^0 \sim \xi_h, \quad \alpha \sim \xi_h^4$

ALPs coupled to dark photons can produce SGWB via tachyonic instability

Thank you for your attention!

Gravitational Waves from Hidden Sectors

Particle Production in the Early Universe — CERN, Sept. 9-13, 2024

Eric Madge (IFT-UAM/CSIC)

Hidden Sector Benchmark Models

Singlet Scalars:

 $\ensuremath{\,{\rm P}}$ 2 real scalars S and A

$$\blacktriangleright$$
 $\langle S \rangle = v_S \,, \ \langle A \rangle = 0, \ A \ Z_2 \text{-odd}$

Dark Photon:

- complex SM singlet scalar
- **p** charged under dark $U(1)_D$

Hidden Sector Phase Transition Detectability

Audible Axion GW Spectrum

Dark Photon Production in Kinetic Misalignment

$$X_{\pm}'' + \left(k^2 \mp k \frac{\alpha \phi'}{S}\right) X_{\pm} = 0$$

$$\implies \tilde{k} = \frac{\alpha \phi}{2S} \sim \begin{cases} \text{const.}, & S > f_{\phi} \\ a^{-2}, & S = f_{\phi} \end{cases}$$

- X production becomes efficient at $a = a_{\star}$ when $\tilde{k} > a_{\star}H_{\star}$
- backreaction on axion motion delayed until a = a_{GW} by X mode growth time

Gravitational Wave Spectrum in Kinetic Misalignment

 \implies similar spectral shape as before, but with different parametric dependence:

GW emitted around a = a_{GW} when X modes have grown

$$\Longrightarrow f_{\rm peak} \propto \alpha \sqrt{\frac{m_{S,0}}{f_{\phi}}} \frac{S_i}{M_{\rm Pl}}$$

amplitude set by axion kinetic energy

$$\Longrightarrow \Omega_{\rm GW}^{\rm peak} \propto \frac{S_i^4}{M_{\rm Pl}^4}$$

Relaxion Evolution

$$\mathcal{L} \supset -\frac{\alpha}{4} \frac{\phi}{f_{\phi}} X_{\mu\nu} \tilde{X}^{\mu\nu} \qquad \Longrightarrow \qquad \ddot{\phi} + 3H\dot{\phi} - \frac{\Lambda_{\rm br}^4}{f_{\phi}} + \frac{\alpha}{f_{\phi}} \frac{\langle \tilde{X}_{\mu\nu} X^{\mu\nu} \rangle}{4 \, a^4} = 0$$

 \blacktriangleright initially: $\langle \tilde{X}X \rangle$ negligible $\Longrightarrow \dot{\phi} \sim t$

• dark photon friction kicks in when $\frac{\alpha}{4a^4} \langle \tilde{X}X \rangle \sim \Lambda_{\rm br}^4$ \implies define time of particle production: $\frac{\langle \tilde{X}X \rangle}{4a^4} \Big|_{t_{\rm pp}} = \frac{\Lambda_{\rm br}^4}{\alpha}$

relaxion reaches terminal velocity: $\dot{\phi} = \xi H f_{\phi}/\alpha$ $\frown \mathcal{O}(10-100)$

relaxion stops when barriers reappear

Dark Photon Production from Relaxion

dark photon EoM:
$$X_{\pm}''(\tau,k) + \left(k^2 \mp k \frac{\alpha \, \phi'(\tau)}{f_{\phi}}\right) X_{\pm}(\tau,k) = 0$$

- $\textbf{P} \ \phi' > 0 \Longrightarrow \text{ only '+' helicity experiences} \\ \text{tachyonic instability}$
- energy predominantly transferred to most tachyonic mode: $k = \frac{\alpha \phi'}{2f_{\phi}} = \frac{\xi a H}{2}$
- after exiting the tachyonic band: $X(k,\tau) \propto \cos(k\tau)/\sqrt{2k}$

$$\implies \quad X_+(k,\tau) \sim k^{-9/2} \cos(k\tau - \xi) \quad \text{for } k > \frac{\xi}{2\tau}$$

Relaxion Gravitational Wave Spectrum

 \blacksquare IR: $f \ll f_{\text{peak}}$ $|\mathbf{q}| \sim |\mathbf{k} - \mathbf{q}| \sim k_{\text{peak}}^X$ $\Omega_{\rm GW}(f) \sim \Omega_{\rm GW}^{\rm peak} \, \xi^2 \, \frac{f^3}{f_{\rm peak}^3}$ \blacktriangleright peak: $f \sim f_{peak}$ $|\mathbf{q}| \sim |\mathbf{k} - \mathbf{q}| \sim k_{\mathsf{peak}}^X$ $\Omega_{\rm GW}(f_{\rm peak}) = \Omega_{\rm GW}^{\rm peak}$ \blacksquare UV: $f \gg f_{\text{peak}}$ $|\mathbf{q}| \sim k_{\text{peak}}^X, \ |\mathbf{k} - \mathbf{q}| \sim k$ $\Omega_{\rm GW}(f) \sim \Omega_{\rm GW}^{\rm peak} \ \frac{f_{\rm peak}^4}{_{\rm F4}}$

