

Probing sterile **neutrino magnetic moments** with **non-pointing photon searches** @ LHC

based on arXiv:2405.08877 with P. Bolton, F. Deppisch, C. Hati, M. Hirsch

Rebeca Beltrán Instituto de Física Corpuscular (IFIC)

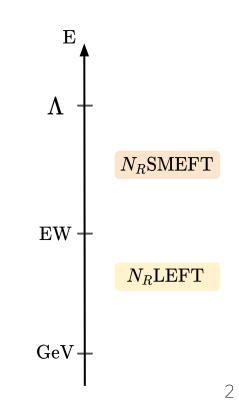
Motivation

Neutrino mass models often predict the existence of RH or **sterile neutrinos**. Seesaw Type-I: $m_N, V_{\ell N} = f(m_{\nu}, m_N)$

Minimal scenario. Sterile neutrinos interact only through neutrino mixing:

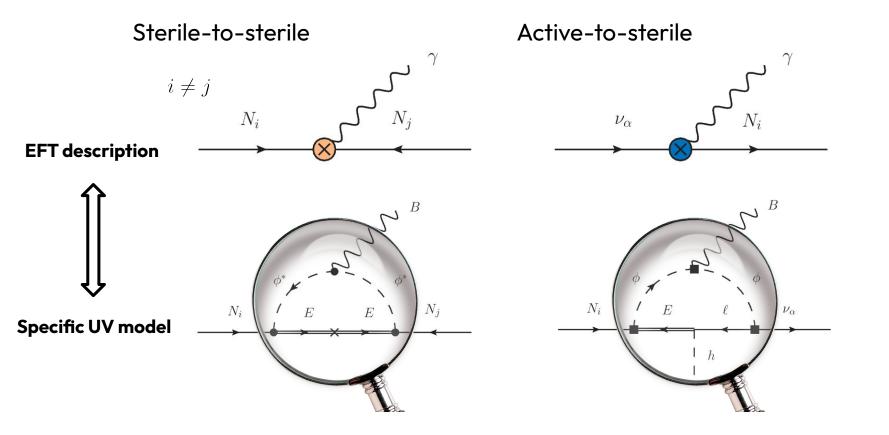
$$\mathcal{L}_{\mathrm{SM}+N_R} \supset \mathcal{L}_{N_R}^{\mathrm{mass}} - \frac{g}{\sqrt{2}} V_{\ell N} \left(\bar{\ell} \gamma^{\mu} N_R^c \right) W_{\mu} - \frac{g}{2 \cos \theta_W} U_{\ell i} V_{\ell N}^* \left(\overline{N_R^c} \gamma^{\mu} \nu_{iL} \right) Z_{\mu} + \mathrm{h.c.}$$

Independent parameters: $m_N, V_{\ell N}$

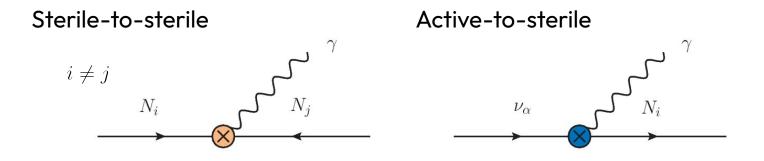

LLP searches @LHC have looked for sterile neutrinos in the minimal scenario.

If sterile neutrinos couple to heavy new physics at Λ

$$\mathcal{L}_{\rm EFT} = \mathcal{L}_{\rm SM+N_R} + \sum_{d>4} C_i^{(d)} \mathcal{O}_i^{(d)} \qquad C_i^{(d)} \propto \Lambda^{4-d}$$

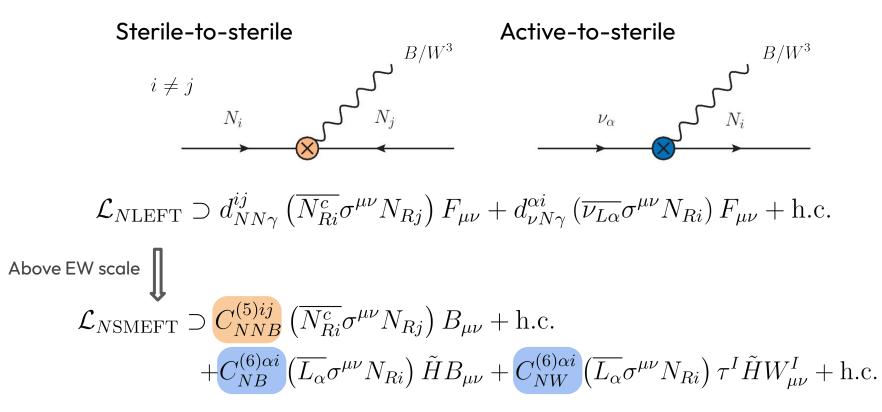

Much more phenomenology to explore if we consider **new interactions** beyond the minimal scenario.

Neutrino magnetic moments



Sterile neutrino magnetic moments

Sterile neutrino magnetic moments



Effective description

 $\mathcal{L}_{NLEFT} \supset d_{NN\gamma}^{ij} \left(\overline{N_{Ri}^c} \sigma^{\mu\nu} N_{Rj} \right) F_{\mu\nu} + d_{\nu N\gamma}^{\alpha i} \left(\overline{\nu_{L\alpha}} \sigma^{\mu\nu} N_{Ri} \right) F_{\mu\nu} + \text{h.c.}$

Effective description

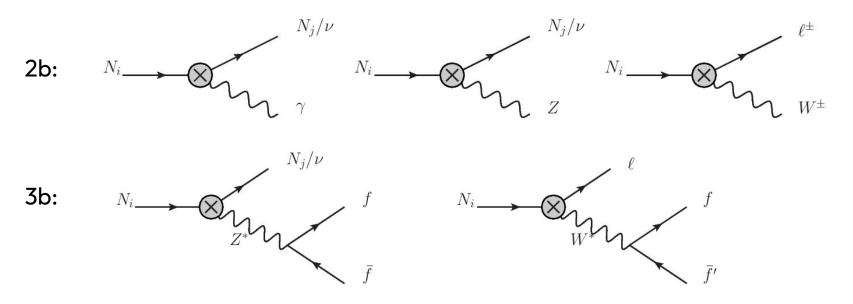
In NSMEFT, it is convenient to use rotated basis with electroweak gauge boson operators:

$$\mathcal{O}_{NN\gamma} = \left(\overline{N_R^c} \sigma_{\mu\nu} N_R\right) F^{\mu\nu} \qquad \mathcal{O}_{\nu N\gamma} = \left(\overline{\nu_L} \sigma_{\mu\nu} N_R\right) F^{\mu\nu} \\ \mathcal{O}_{NNZ} = \left(\overline{N_R^c} \sigma_{\mu\nu} N_R\right) Z^{\mu\nu} \qquad \mathcal{O}_{\nu NZ} = \left(\overline{\nu_L} \sigma_{\mu\nu} N_R\right) Z^{\mu\nu} \qquad \mathcal{O}_{\ell NW} = \left(\overline{\ell_L} \sigma_{\mu\nu} N_R\right) W^{\mu\nu} \\ \swarrow^{N_i} \qquad \swarrow^{N_i} \qquad \swarrow^{V_\alpha} \qquad \swarrow^{\ell_\alpha^\pm} \\ N_i \qquad N_i \qquad$$

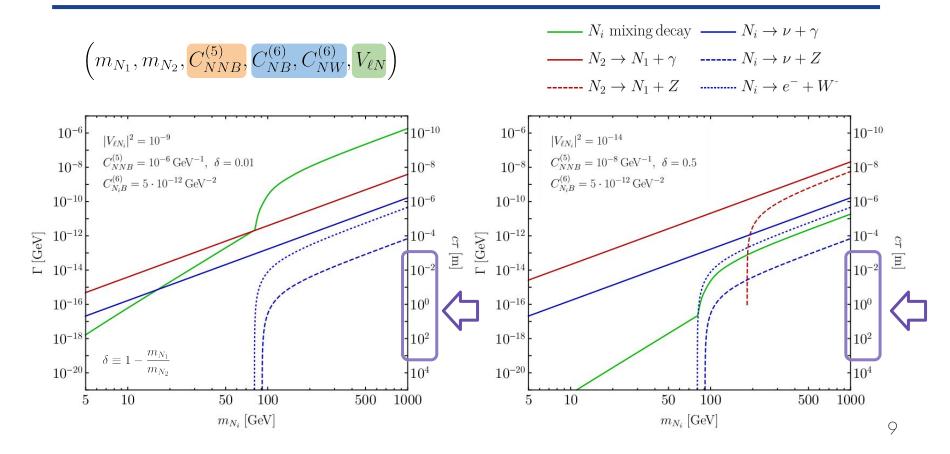
$$C_{NNB}^{(5)} \Leftrightarrow d_{NN\gamma}, d_{NNZ}$$

$$C_{NB}^{(6)}, C_{NW}^{(6)} \Leftrightarrow d_{\nu N\gamma}, d_{\nu NZ}, d_{\ell NW}$$

$$\begin{split} d_{NN\gamma}^{ij} &= c_w C_{NNB}^{(5)ij}, \quad d_{NNZ}^{ij} = -s_w C_{NNB}^{(5)ij}, \\ d_{\nu N\gamma}^{\alpha i} &= \frac{v}{\sqrt{2}} \left(c_w C_{NB}^{(6)\alpha i} + \frac{s_w}{2} C_{NW}^{(6)\alpha i} \right), \quad d_{\nu NZ}^{\alpha i} = \frac{v}{\sqrt{2}} \left(-s_w C_{NB}^{(6)\alpha i} + \frac{c_w}{2} C_{NW}^{(6)\alpha i} \right) \\ d_{\ell NW}^{\alpha i} &= \frac{v}{2} C_{NW}^{(6)\alpha i} \end{split}$$

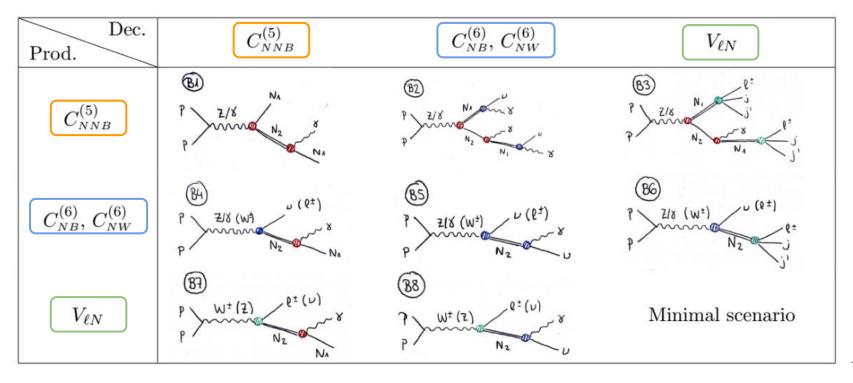

Phenomenology @ LHC

Sterile neutrino production

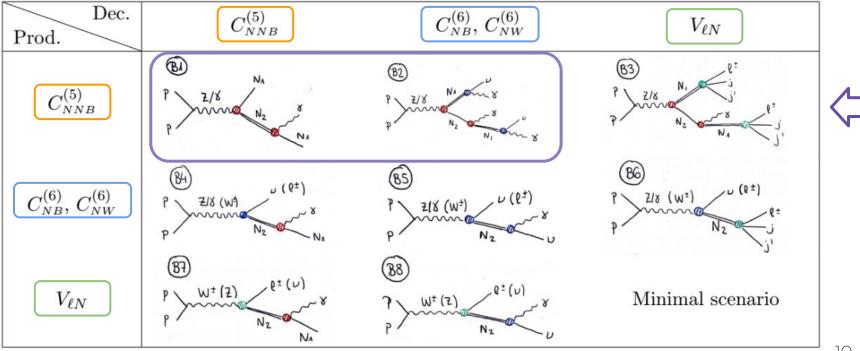


Sterile neutrino decay

Sterile neutrinos can undergo 2-body or 3-body decays, depending on available phase space



Sterile neutrino decay

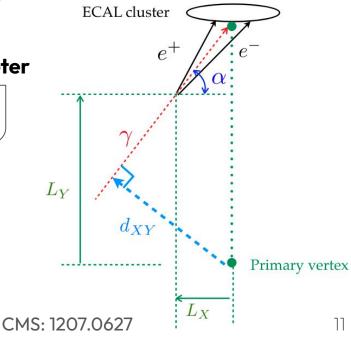

Possible scenarios

Each coupling can dominate production and decay (9 benchmarks)

Possible scenarios

Each coupling can dominate production and decay (9 benchmarks)

Non-pointing photon search


LLP signature: non-pointing photons

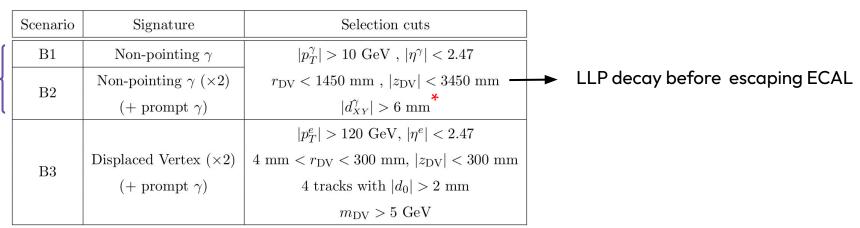
Non-pointing photons are emitted in the decay of LLPs:

- occur at a secondary vertex, displaced from PV
- leave a signal at ECAL
- displacement characterized by Impact Parameter

Minimal distance from photon trajectory to PV $\$

$$d_{XY} = -L_X \cdot \sin \alpha + L_Y \cdot \cos \alpha$$
$$d_Z = L_Z - \frac{L_X \cdot p_X + L_Y \cdot p_Y}{p_T} \cdot \frac{p_Z}{p_T}.$$

Prequires knowing precisely PV location


We perform numerical study to estimate ATLAS sensitivity reach:

- 1. Model implemented in FeynRules
- 2. pp collisions at $\sqrt{s} = 14 \text{ TeV}$ in MadGraph5, 100k events at each grid point
- 3. Particle decays handled in MadSpin
- 4. Detection efficiencies obtained with Pythia8

 $(m_{\rm LLP}, c_{\rm decay})$

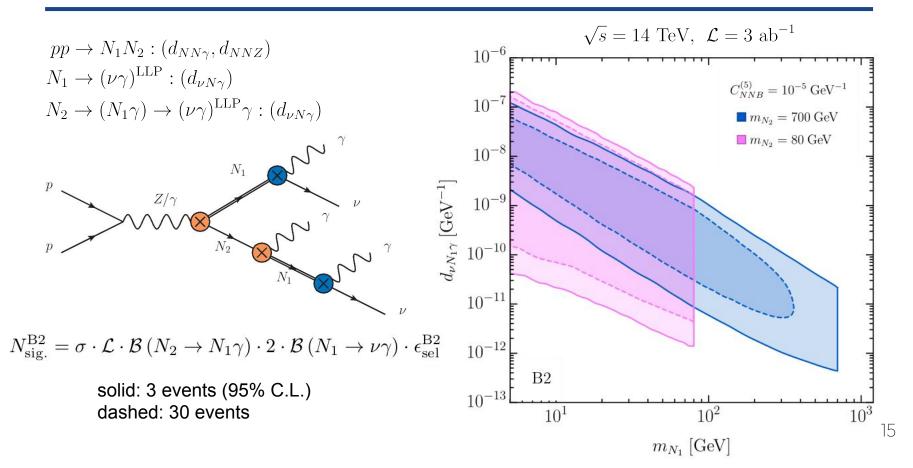
Scenario	Model parameters		Simulated decay
	Scan	Fixed	Simulated decay
B1	$m_{N_2}, C_{NNB}^{(5)}$	δ	$N_2 \rightarrow N_1 \gamma$
B2	$m_{N_1}, C^{(6)}_{N_1 X}$	$m_{N_2}, C_{NNB}^{(5)}$	$N_2 o N_1 \gamma$ $N_1 o u \gamma$
B3	$m_{N_1}, V_{eN_1} ^2$	$m_{N_2}, C_{NNB}^{(5)}$	$ \begin{array}{c} N_1 \rightarrow \nu \gamma \\ \hline N_2 \rightarrow N_1 \gamma \\ \hline N_1 \rightarrow ejj \end{array} $

Efficiencies: selection cuts

Number of signal events for each scenario:

$$N_{\text{sig.}}^{\text{B1}} = \sigma \cdot \mathcal{L} \cdot \mathcal{B} \left(N_2 \to N_1 \gamma \right) \cdot \epsilon_{\text{sel}}^{\text{B1}}$$
$$N_{\text{sig.}}^{\text{B2}} = \sigma \cdot \mathcal{L} \cdot \mathcal{B} \left(N_2 \to N_1 \gamma \right) \cdot 2 \cdot \mathcal{B} \left(N_1 \to \nu \gamma \right) \cdot \epsilon_{\text{sel}}^{\text{B2}}$$
$$N_{\text{sig.}}^{\text{B3}} = \sigma \cdot \mathcal{L} \cdot \mathcal{B} \left(N_2 \to N_1 \gamma \right) \cdot 2 \cdot \mathcal{B} \left(N_1 \to ejj \right) \cdot \epsilon_{\text{sel}}^{\text{B3}}$$

*original cut from CMS: 1207.0627 to reduce background


Sensitivity prospects: B1

 $\sqrt{s} = 14 \text{ TeV}, \ \mathcal{L} = 3 \text{ ab}^{-1}$ $pp \rightarrow N_1 N_2 : (d_{NN\gamma}, d_{NNZ})$ 10^{-3} $N_2 \to (N_1 \gamma)^{\text{LLP}} : (d_{NN\gamma}, \delta)$ m_{N_1} $\delta \equiv 1$ m_{N_2} 10^{-} N_1 p Z/γ LEP $d_{NN\gamma}$ [GeV⁻¹ 10^{-5} N_2 p N_1 10^{-6} $\bullet \delta = 0.1$ $\bullet \delta = 0.05$ $N_{\text{sig.}}^{\text{B1}} = \sigma \cdot \mathcal{L} \cdot \mathcal{B} \left(N_2 \to N_1 \gamma \right) \cdot \epsilon_{\text{sel}}^{\text{B1}}$ $\bullet \delta = 0.01$ 10^{-7} $\delta = 0.005$ **B**1 solid: 3 events (95% C.L.) dashed: 30 events 10^{0} 10^{1}

 m_{N_2} [GeV]

14

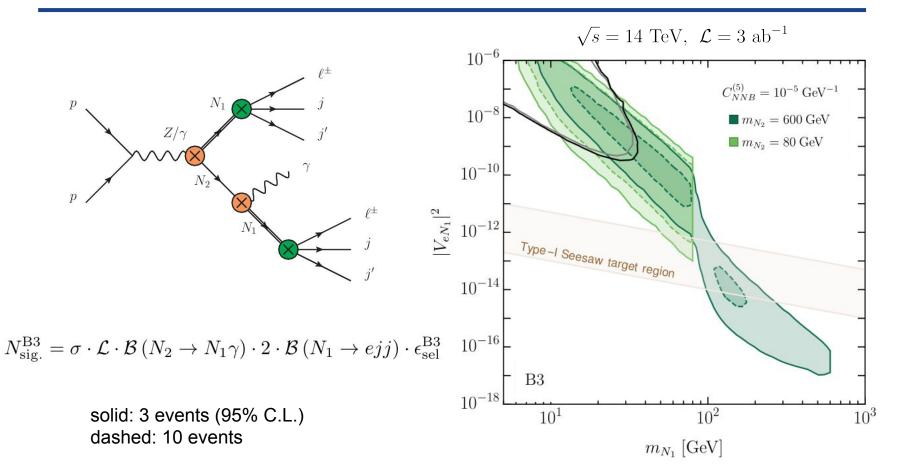
Sensitivity prospects: B2

Rich phenomenology of heavy sterile neutrinos with magnetic moments @ LHC

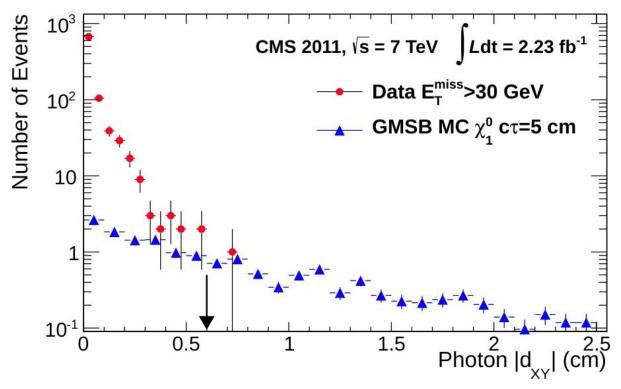
displaced vertices + non-pointing/delayed photons

LHC experiments can use these signatures to probe new sterile neutrino interactions (beyond minimal neutrino mixing)

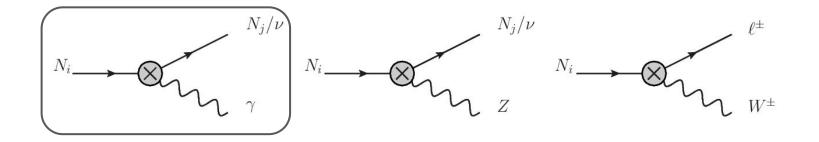
Non-pointing photon searches could be sensitive to new parts of parameter space for $d_{NN\gamma}, d_{\nu N\gamma}$


Probing sterile **neutrino magnetic moments** with **non-pointing photon searches** @ LHC

based on arXiv:2405.08877 with P. Bolton, F. Deppisch, C. Hati, M. Hirsch


Rebeca Beltrán Instituto de Física Corpuscular (IFIC)

Sensitivity prospects: B3



Non-pointing photon backgrounds

CMS: 1207.0627

Sterile neutrino decay

$$\Gamma(N_2 \to N_1 \gamma) = \frac{2|d_{NN\gamma}^{12}|^2}{\pi} m_{N_2}^3 (2-\delta)^3 \delta^3 \qquad \delta \equiv 1 - \frac{m_{N_1}}{m_{N_2}}$$

$$\Gamma(N_i \to \nu \gamma) = \frac{|d_{\nu N_i \gamma}|^2}{2\pi} m_{N_i}^3$$