

Long-lived particle searches with the ILD experiment

The fourteenth workshop of the Long-Lived Particle Community 1-5 July 2024, University of Tokyo

D. Jeans(1) , J. Klamka(2), A. F. Żarnecki(2) (1)KEK, (2)University of Warsaw

jan.klamka@fuw.edu.pl

Long-lived particles (LLPs)

Particles with macroscopic lifetimes naturally appear in numerous BSM models

Three main mechanisms are responsible for that...

[1810.12602](https://arxiv.org/pdf/1810.12602.pdf)

 \rightarrow ...but they authomatically make it challenging for hadron colliders to search for LLPs

International Large Detector (ILD)

- Multi-purpose detector for an e^+e^- Higgs Factory (HF)
- Example: the International Linear Collider (ILC), with baseline c.m.s. energy **250**-500 GeV
- Possible operation at other HF proposals now under study

International Large Detector (ILD)

- Nearly 4π angular coverage, optimised for particle flow
- **Time projection chamber (TPC)** as the main tracker allows for continuous tracking and dE/dx PID
- High granularity calorimeter with minimal material in front of it inside 3.5 T solenoid

LLPs at the Higgs factories

- Multiple LLP searches at the LHC, sensitive to high masses and couplings
	- → **<u>complementary region</u>** could be probed at e^+e^- colliders (**small masses, couplings, mass splittings**)
	- \rightarrow typical properties of feebly interacting massive particles (FIMPs)
- ILD potentially promising with a TPC as the main tracker (almost continous tracking)

LLPs at the Higgs factories

- Multiple LLP searches at the LHC, sensitive to high masses and couplings
	- → **<u>complementary region</u>** could be probed at e^+e^- colliders (**small masses, couplings, mass splittings**)
	- \rightarrow typical properties of feebly interacting massive particles (FIMPs)
- ILD potentially promising with a TPC as the main tracker (almost continous tracking)

- Study such challenging signatures from the **experimental perspective**
	- \rightarrow experimental/kinematic properties, not points in a model parameter space
- Focus on a generic case two tracks from a displaced vertex
- No other assumptions about the final state, approach **as general as possible**

Framework and signatures

As a challenging case (small boost, low-pT final state) we considered:

 \rightarrow heavy scalar LLP (A) and DM (H) pair-production with small mass splitting, $Z^* \rightarrow \mu\mu$

Framework and signatures

As a challenging case (small boost, low-pT final state) we considered:

 \rightarrow heavy scalar LLP (A) and DM (H) pair-production with small mass splitting, $Z^* \rightarrow \mu\mu$

The opposite extreme case, (large boost, high-pT final state)

 \rightarrow light pseudoscalar LLP $a \rightarrow \mu\mu$

Very simple vertex finding (inside the TPC) based on a distance between track pairs

Overlay events background

At linear e+e – colliders beams are strongly focused and radiate photons, so γγ interactions also occur in detector. On average, in each bunch-crossing (BXs) at ILC, produced are: e^+e^- Pairs

- **1.55** $\gamma \gamma \rightarrow \text{low-p}_{\top}$ **hadrons** events
- **O(10⁵) incoherent e+e – pairs**, only a small fraction enters detector

These events are soft, usually important because they **overlay** on physical events

...but can also look like signal on their own

Overlay events background

At linear e+e – colliders beams are strongly focused and radiate photons, so γγ interactions also occur in detector. On average, in each bunch-crossing (BXs) at ILC, produced are: e^+e^- Pairs

- **1.55** $\gamma \gamma \rightarrow \text{low-p}_{\top}$ **hadrons** events
- **O(10⁵) incoherent e+e – pairs**, only a small fraction enters detector

These events are soft, usually important because they **overlay** on physical events

...but can also look like signal on their own

- ~10¹¹ BXs per year at ILC \rightarrow overwhelming number of overlay events
- Similar kinematics to the signal considered and can be busy
	- \rightarrow many secondary vertices (mostly fake, also V^os and photon conversions)
	- \rightarrow significant background

Overlay events background

At linear e+e – colliders beams are strongly focused and radiate photons, so γγ interactions also occur in detector. On average, in each bunch-crossing (BXs) at ILC, produced are:

- **1.55** $\gamma \gamma \rightarrow \text{low-p}_{\top}$ **hadrons** events
- **O(10⁵) incoherent e+e – pairs**, only a small fraction enters detector

These events are soft, usually important because they **overlay** on physical events

...but can also look like signal on their own

- ~10¹¹ BXs per year at ILC \rightarrow overwhelming number of overlay events
- Similar kinematics to the signal considered and can be busy
	- \rightarrow many secondary vertices (mostly fake, also V^os and photon conversions)
	- \rightarrow significant background
		- Can be suppressed using cuts on the track pair geometry and $p_{T} > 1.9$ GeV
		- Total expected reduction factor at the level of **~10-9**

Background from high-p_T events

The following survive overlay selection in the hard e+e– processes:

- Displaced decays of kaons, lambdas, photons
- Secondary tracks from interactions with detector material

They occur mainly inside jets, so we consider (hard) e^+e^- and $\gamma\gamma$ processes with jets in final state

Additional cuts on invariant mass are applied, with two working points: **standard** and **tight** (tight involving also **isolation** criterium)

Selection eff. depends on number of jets, so:

Estimate selection efficiency based on full simulation

Use qq efficiency for the remaining processes

Vertex finding results

- Efficiency $=$ (correct / decays within TPC acceptance), "correct" if distance to the true vtx $<$ 30 mm
- **Signal selection** depends strongly on the **mass splitting** (Z* virtuality) and **mass** of a (final state boost)
- A dedicated approach could enhance sensitivity for $\Delta m_{AH} = 1$ GeV and $m_a = 300$ MeV scenarios

 $S^{\bigvee_{\mathbb{A}}\bigvee_{\mathbb{A}}\mathbb{E} R} S$

Cross section limits

- Tight selection: dashed line, standard selection: solid line
- A wide range of models with heavy scalars with small mass splittings, or light pseudo scalar particles, can be excluded down to 0.1 fb

Alternative all-silicon ILD design

Alternative ILD design implemented for tests

- **TPC replaced** by the **silicon Outer Tracker**, modified from the CLICdet
- One **barrel layer** added and **endcap layers spacing** increased w.r.t. CLICdet
- **Conformal tracking** algorithm (designed for CLICdet) used for reconstruction at all-silicon ILD

→ Check how the **results** for heavy scalars are influenced by a **change of tracker** design

Heavy scalars at all-silicon ILD

- **Vertex reconstruction driven by track reconstruction efficiency**
- Performance similar to baseline design (TPC) near the beam axis
- Smaller number of hits available \rightarrow **efficiency drops faster** with vertex displacement
- At least 4 hits required for track reconstruction \rightarrow limited reach
- For large decay lengths, **efficiency significantly higher** for "standard" ILD with **TPC**

Summary

- We study LLPs in parameter space regions complementary to LHC searches
- Inclusive search for with **two tracks** from a **displaced vertex**

 \rightarrow a simple vertex-finding algorithm developed, with a set of cuts aimed to suppress background from the overlay events and hard SM processes

- For heavy scalars production, with **small mass splittings** between LLP and DM and **lowmomenta decay products**, good sensitivity from **Δm = 2 GeV**
- Reconstruction of **highly boosted, light** pseudoscalar decaying into muons performed with the same algorithm and procedure indicates good sensitivity for **masses** ≥ 1 GeV
- Estimated 95% CL limits on signal cross section indicate ILD's high reach for a wide range of lifetimes (0.003-10 m, depending on a scenario)
- Alternative ILD design used for comparison between all-silicon tracker and TPC

→ tracking tests for heavy scalars confirm **TPC can improve the reach** in LLP searches

BACKUP

Vertex finding strategy

Approach as simple and general as possible:

- Consider tracks in pairs
- \bullet As the TPC is not sensitive to track direction:

 \rightarrow use both track direction (charge) hypothesis for vertex finding

- \rightarrow consider opposite-charge track pairs only
- \rightarrow select pair with closest starting points
- Reconstruct vertex in **between points of closest approach** of helices
	- \rightarrow Require distance \lt 25 mm

Final selection – pT

- We consider **γγ** → **had.** and **e +e – samples** separately
- Estimated background eff. from fitted distributions $\sim 10^{-3}$ ($\sim 10^{-5}$ –10^{*n*} with preselection)
- Very small statistics in e⁺e⁻ sample after preselection \rightarrow fit shape from $\gamma \gamma \rightarrow$ had. with floating normalisations

Final selection – other variables

- At least one more (independent) variable needed to achieve the assumed reduction
- We expect that **signal** tracks should come out of a single point → **reference points should be close**
- In busier backgound events, still many tracks evade the cuts – e.g. curlers, secondary decays
- → either **far reference points** or **close centres of helices**

- \cdot **d**_{ref} distance between reference points (TrackStates / first hits)
- \cdot **d**_c distance between centres of helices projections into XY plane

Final selection – second variable

- New variable(s) should be uncorrelated with pT to make the cuts independent
- 2.2d_{ref} d_c good for optimal signal-background separation \rightarrow use it to look for correlation

5 July 2024 Jan Klamka, LLP searches with the ILD experiment 22

Final selection – second variable

- Same approach as for the pT
- For $2.2d_{ref} d_c < -2000$ mm, **signal eff.** $\sim 37\%$ ($\Delta m = 2 \text{ GeV}$)
- Estimated background eff. from fitted distributions $\sim 10^{-4}$ ($\sim 10^{-6}$ –10⁻⁷ with preselection)
- Total expected efficiency at the level of **~10-9** (**~10-10**) for **γγ** → **had.** (**e +e – pairs**)

For small correlations *r* between *x* and *y*, total selection efficiency can be described as

$$
\epsilon_{xy}=\epsilon^{(1-r)}_y\epsilon_x,\,\epsilon_x>\epsilon_y
$$

For cuts on p_T and $2.2d_{ref} - d_C$ (slide 5), assuming 30% **correlation**, for $\gamma \gamma \rightarrow$ had. (e⁺e⁻ pairs) that gives:

• 2.8⋅10⁻⁶ (3.4⋅10⁻⁶)

 \bullet 4.6⋅10⁻⁸ (1.7⋅10⁻⁹) ← combined with preselection

Combined cut efficiency $x > 2 \cap y > 3$

