

Freeze-in sterile neutrino dark matter in feeble gauged *B-L* model

Takashi Shimomura (Miyazaki U.)

PRD 106, 103513 (2022) and arXiv:2024.00654

in collaboration with

Shintaro Eijima (Niigata U.), Osamu Seto (Hokkaido U.), Yoshiki Uchida (South China Normal U.)

Long-Lived Particle2024@Tokyo U., 2024/7/2

Introduction

Two open questions in particle physics and cosmology

- ► Neutrino Mass
 - Very tiny compared with other SM particles

 $\Delta m_{12}^2 = 7.53 \times 10^{-5} \text{ eV}^2, \quad \Delta m_{32}^2 = 2.45 \ (2.55) \times 10^{-3} \text{ eV}^2 \qquad \text{[PDG]}$ $\Sigma m_\nu < 0.13 \text{ eV}, \quad N_{\text{eff}} = 2.99 \pm 0.17 \qquad \text{[Planck 2018]}$

- The origin of the masses will be BSM physics.
- Dark Matter
 - No candidate in the SM particle content.
 - Dark matter must be new particle.
 - WIMP dark matter has been tightly constrained.
 - Other possibility might be considered.

Introduction

- Right-handed neutrino is a possible solution to both problems.
 - Seesaw mechanism [Minkowski (1977), Yanagida (1979), Gell-Mann et al (1979)]

$$\mathscr{L}_{\nu} = m_{D}\overline{\nu_{L}}\nu_{R} + \frac{M}{2}\overline{\nu_{R}^{c}}\nu_{R} + \mathrm{h.c.}$$

- Active neutrino $\nu_a \simeq \nu_L$, mostly SU(2) doublet

$$m_{\nu_a} \simeq \frac{m_D^2}{M} \qquad (M \gg m_D)$$

Sterile neutrino dark matter

- Sterile neutrino $\nu_s \simeq \nu_R$, mostly SM singlet

$$m_{\nu_s} \simeq M$$

Massive and Very weakly interacting with the SM sector

Dark matter candidate

Freeze-in

Freeze-in Production

• Dodelson-Widrow mechanism [Dodelson and Widrow, PRL (1994)]

• Due to $\theta \ll 1$, the sterile neutrino DM is never thermalized

[Hall, Jedamzik et al, JEHP (2010)]

Sterile ν abundance

$$\Omega_{\nu_s} h^2 = 0.1 \left(\frac{\theta^2}{3 \times 10^{-9}} \right) \left(\frac{m_s}{3 \text{ keV}} \right)^{1.8}$$

[Shakya, MPLA (2016)]

Sterile ν DM

 \blacktriangleright X-ray and Lyman- α observations searched for the sterile neutrino DM

• Radiative decay [Pal and Wolfenstein, PRD (1982)]

$$\nu_{s} \xrightarrow{\theta} \nu_{L} \qquad \nu_{s} \xrightarrow{\theta} \mathcal{N}_{L} \qquad \nu_{s} \xrightarrow{\theta} \mathcal{N}_{L} \qquad \nu_{L} \qquad \Gamma_{\nu\gamma} = 5.5 \times 10^{-22} \theta^{2} \left(\frac{m_{s}}{\text{keV}}\right)^{5} /\text{sec}.$$

• Rule out sterile ν DM from the DW mech.

Both production & decay depend on θ

Alternative production mechanism

Gauged B-L model

* B = Baryon number L = Lepton number

Gauged B-L Model

• Extend the SM gauge group to $SU(3) \times SU(2)_L \times U(1)_Y \times U(1)_{B-L}$

	Q	u	d	L	e_R	$ u_R$	Н	Φ
$SU(3)_C$	3	3	3	1	1	1	1	1
$SU(2)_L$	2	1	1	2	1	2	1	1
$U(1)_Y$	$\frac{1}{6}$	$\frac{2}{3}$	$-\frac{1}{3}$	$-\frac{1}{2}$	-1	0	$\frac{1}{2}$	0
$U(1)_{B-L}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	-1	-1	-1	0	2

New particles

- 3 generations of RH neutrino for anomaly cancellation
 - Two for Seesaw mechanism
 - One for sterile ν dark matter
- Gauge boson Z' of the B-L symmetry
- Scalar Φ for spontaneous breaking of the *B*-*L* symmetry

Dark Matter Production

The sterile DM scenario in B-L model has been studied comprehensively

- Different mass spectrum ($m_N \sim 10 \text{ keV}$, $m_{Z'} > 2m_N$, $m_{Z'} < 2m_N$)
- Thermal production has been excluded.
- •Non-thermal production or freeze-in is viable scenario.

[Khalil, Seto, JCAP (2008)], [Kaneta, Kang, Lee, JHEP (2017)], [Biswas, Gupta, JCAP (2016)], [Seto, TS, PLB (2020)],

New Production Processes

We consider the following new processes, which are discarded in the previous studies,

- Longitudinal polarizations of Z'
- \blacktriangleright intermediate ϕ contribution
- $\blacktriangleright \gamma \to Z' \text{ conversion}$
- \blacktriangleright Inverse-decay productions of Z' and ϕ

Interaction Rate

- $f\bar{f} \rightarrow NN, Z'Z' \rightarrow NN$ are suppressed due to $\langle \sigma v \rangle \propto g_{B-L}^4$
- $f\gamma \leftrightarrow fZ'$ is large due to $\propto e^2 g_{B-L}^2$ and abundant f/γ in thermal bath.
- $Z'Z' \rightarrow \phi$ is enhanced due to longitudinal mode.
- DM can be produced from $\phi \to NN$ (Ω_{DM} depends on m_{ϕ}).

Yield Value

\blacktriangleright Not only the DM but also ϕ and Z' are non-thermally produced.

<u>Yield Value</u>

 $\blacktriangleright f \bar{f} \rightarrow \phi$ is possible when ϕ has the mixing with the SM higgs

The gauge coupling must be much smaller due to the new processes.

$\phi \rightarrow NN$ forbbiden case

- ► $2m_N > m_{Z'}, m_{\phi}$
 - DM cannot be produced from ϕ decay.
 - •Scattering of $Z'Z' \rightarrow NN$ is only way for the DM production.

Such a region can be searched by the FASER experiment.

[Seto, Shimomura, Uchida, on-going]

Summary

We have reexamined the freeze-in production of the sterile neutrino dark matter in gauged *B-L* model.

- $\blacktriangleright Z' \rightarrow NN$ forbidden ($2m_N > m_{Z'}$) case
 - • $f\gamma \rightarrow fZ', Z'Z' \rightarrow \phi$ are dominant processes of the production.
 - The new particles N, Z', ϕ are produced by freeze-in mechanism.
 - •DM can be produced from ϕ decay when kinematically allowed.
 - The gauge coupling must be $10^{-14} 10^{-10}$.
- $\blacktriangleright Z', \phi \rightarrow NN$ forbidden ($2m_N > m_{Z'}, m_{\phi}$)
 - •Scattering of $Z'Z' \rightarrow NN$ is only way for the DM production.
 - •The gauge coupling can be large, $10^{-9} 10^{-6}$.
 - $\bullet Z'$ can be searched at future FASER 2 experiment.