# New neutrino results from the FASER experiment at the LHC

Motoya Nonaka (Chiba University) on behalf of the FASER collaboration



# Neutrino studies in FASER



- Neutrinos at unexplored TeV energy regions
- Located 480 m downstream of ATLAS interaction point on-axis
- Background for LLP searches

# FASERv emulsion detector



- Emulsion-based detector
  - 730 × [emulsion film + tungsten (1.1 mm thickness)]
  - 250 mm × 300 mm, 1 m long, **1.1 tons** ( $8\lambda_{int}$ , **220X**<sub>0</sub>)

r flavors are tagged with topological/kinematical informations



Emulsion films Tungsten plate (1.1 mm)

- All v flavors can be tagged thanks to the good resolution of the emulsion
  - 200 nm silver bromide crystals dispersed in gelatin
  - O(100) nm position resolution can be achieved
- Install (exchange) emulsions 3 times a year

#### FASERv expected number of CC interactions



|                                         | 2402.13318                   |                           |                              |
|-----------------------------------------|------------------------------|---------------------------|------------------------------|
| Run3, 250 fb <sup>-1</sup>              | ν <sub>e</sub>               | $v_{\mu}$                 | v <sub>r</sub>               |
| The expected CC nteraction in FASER $v$ | 1675 <sup>+911</sup> 37<br>2 | 8507 <sup>+992</sup> -962 | <b>28</b> <sup>+48</sup> -12 |

100 100 10

- Large uncertainty for forward charm production
- ~10,000v interactions at unexplored energy regions expected in LHC Run 3 (250 fb<sup>-1</sup>)

#### FASERv operations/analyses



#### Datasets for current analysis

- 9.5 fb<sup>-1</sup> in 2022 run
- Analyzed target mass of 128.6 kg
- $\sim$  1.7% of the data collected so far



#### **Detector performances**



#### Electron energy measurement



### Muon momentum measurement

- Based on multiple Coulomb scattering
- ~30% resolution @ 200 GeV from the reproductivity studies in both MC and data



$$s_{plane}^{RMS} = \sqrt{\left(\sqrt{\frac{2}{3}} \cdot \frac{13.6MeV}{P} n_{cell} \cdot z_{cell} \sqrt{\frac{n_{cell} \cdot z_{cell}}{X_c}}\right)^2 + \left(\sqrt{6}\sigma_{pos}\right)^2} \dots (1)$$

 $z_{cell}$ : The thickness of one emulsion film and tungsten plate  $X_C$ : Compound radiation length (4.57 mm, cf:  $X_W$ =3.5 mm)  $\sigma_{pos}$ : Position resolution



• Performed test beam experiment to validate the momentum measurement method in 2023



|                                                  | Center value | Resolution |  |  |
|--------------------------------------------------|--------------|------------|--|--|
| Test beam                                        | 286 GeV      | 31%        |  |  |
| MC expectation                                   | 300 GeV      | 30%        |  |  |
| Center value = 1/mean<br>Resolution = sigma/mean |              |            |  |  |
| 30% error agrees well with simulation            |              |            |  |  |

#### First detection of $v_e$ and $v_{\mu}$ with FASERv detector



103

10<sup>2</sup>

10

neutral hadrons

2500

3000 E<sub>v</sub> [GeV]

|                     | Expected background            | Expected signal | Observed | Significance        |
|---------------------|--------------------------------|-----------------|----------|---------------------|
| $v_{\rm e}{\rm CC}$ | 0.025 <sup>+0.015</sup> -0.010 | 1.1-3.3         | 4        | <b>5.2</b> $\sigma$ |
| $v_{\mu}$ CC        | 0.22 <sup>+0.09</sup> -0.07    | 6.5-12.4        | 8        | <b>5.7</b> σ        |

10 The modeling of the neutral-hadron backgrounds are validated using data

#### Neutrino event characteristics



• Characteristics of the observed v interactions are in good agreement with MC





#### First cross section measurement at TeV energies



- First measurement of the  $v_e$  and  $v_{\mu}$  interaction cross section at the LHC with emulsion detector at TeV energy regions
- L=9.5 fb<sup>-1</sup>, m=128.6 kg
- To appear in PRL
- arXiv:2403.12520

#### Summary

- FASER<sub>v</sub> studies three flavor neutrinos at the **unexplored TeV energy regions**
- FASER is taking data in the far-forward direction of the LHC from 2022 to 2025
  - $\circ$  ~10,000 $\nu$  interactions expected
- Excellent performances of the FASER<sub>v</sub> detector
  - $\sim$  ~300 nm position resolution, ~25% electron energy resolution
  - ~30% muon momentum resolution @300 GeV from the test beam result
- First observation of  $v_e$  at the LHC
  - 4  $v_e$  CC and 8  $v_{\mu}$  CC interactions are observed (signal significance of 5.2 $\sigma$ , 5.7 $\sigma$  respectively )<sup> $\mu$ </sup>
- First measurement of the  $v_e$  and  $v_{\mu}$  cross sections at TeV energies (with 1.7% of the data)
- Plan to analyze 10× more data for the next analysis
- Discussing extended physics programs in Forward Physics Facility in HL-LHC era

# Backup

#### FASERv cross section sensitivity



- Three flavors neutrino cross section at unexplored TeV energy regions
- Neutrino energy reconstruction with resolution of 30% expected from simulation studies

# Validation of background simulation



- The modeling of the neutral-hadron backgrounds are validated using data
  - The number of interaction is compatible at better than 50%
  - The shape of the distributions are well modelled

#### Muon momentum measurement



#### Electron energy measurement



#### Efficiencies of the selection

| Selection                                                | $\nu_e$ CC | $\nu$ NC | $K_L$ | n     | Λ     |
|----------------------------------------------------------|------------|----------|-------|-------|-------|
|                                                          | 1.000      | 1.000    | 1.000 | 1.000 | 1.000 |
| Vertex reconstruction and $N_{	ext{track}} \geq 5$       | 0.516      | 0.336    | 0.813 | 0.803 | 0.753 |
| $E_e>$ 200 GeV                                           | 0.340      | 0.001    | 0.000 | 0.000 | 0.000 |
| $E_e>$ 200 GeV, tan $	heta>$ 0.005                       | 0.270      | 0.001    | 0.000 | 0.000 | 0.000 |
| $E_e>$ 200 GeV, tan $	heta>$ 0.005. $\Delta \phi>$ 90deg | 0.244      | 0.000    | 0.000 | 0.000 | 0.000 |

| Selection                                       | $ u_{\mu}$ CC | $\nu$ NC | $K_L$ | n     | $\Lambda$ |
|-------------------------------------------------|---------------|----------|-------|-------|-----------|
|                                                 | 1.000         | 1.000    | 1.000 | 1.000 | 1.000     |
| Vertex reconstruction and $N_{ m track} \geq 5$ | 0.446         | 0.336    | 0.813 | 0.803 | 0.753     |
| p>200 GeV                                       | 0.284         | 0.071    | 0.028 | 0.026 | 0.018     |
| p>200 GeV, tan $	heta>$ 0.005                   | 0.236         | 0.051    | 0.007 | 0.013 | 0.007     |
| $p>$ 200 GeV, tan $	heta>$ 0.005. $\phi>$ 90deg | 0.221         | 0.004    | 0.002 | 0.006 | 0.004     |

#### Systematic uncertainty

| Source                         | Relative uncertainty     |                          | Relative uncertainty |  |
|--------------------------------|--------------------------|--------------------------|----------------------|--|
|                                | $ u_e$                   | $ u_{\mu}$               |                      |  |
| Luminosity                     | 2.2%                     | 2.2%                     |                      |  |
| Tungsten thickness             | 1%                       | 1%                       |                      |  |
| Interactions with emulsions    | $^{+3.6}_{-0}\%$         | $^{+3.6}_{-0}\%$         |                      |  |
| Flux uncertainty               | $^{+70}_{-22}\%$         | $^{+16}_{-9}\%$          |                      |  |
| Line of sight position         | $^{+2.1}_{-2.4}\%$       | $^{+1.9}_{-2.5}\%$       |                      |  |
| Efficiency from hadronization  | $^{+22}_{-5}\%$          | $^{+23}_{-5}\%$          |                      |  |
| Efficiency from reconstruction | 20%                      | 20%                      |                      |  |
| Efficiency from MC statistics  | 4.9%                     | 2.8%                     |                      |  |
| Total                          | $^{+70}_{-22}\%$ (flux)  | $^{+16}_{-9}\%$ (flux)   |                      |  |
|                                | $^{+30}_{-21}\%$ (other) | $^{+31}_{-21}\%$ (other) |                      |  |

