COmpact Detector for EXotics at LHCb: CODEX-b

Jake Pfaller

University of Cincinnati On behalf of the CODEX-b collaboration

C O D E X – b

July 1, 2024

| ◆ □ ▶ ◆ 個 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 오 ⊙

University of Cincinnati

COmpact Detector for EXotics at LHCb: CODEX-b

lake Pfaller

- Conventional LHC searches focus on a small range of $c\tau$
- SM backgrounds make LLP searches at current LHC detectors very difficult
- A transverse detector would have access to higher $c\tau$ and higher \sqrt{s} than forward detectors

arXiv:1903.04497

University of Cincinnati

arXiv:1911.00481

COmpact Detector for EXotics at LHCb: CODEX-b

Jake Pfaller

CODEX-b

CODEX-b: COmpact Detector for EXotics at LHCb

- Transverse long-lived particle detector.
- Located at LHC interaction point 8, next to the LHCb detector.
- 10m cube of resistive plate chambers (RPCs).
- Near zero-background experiment, achievable with a combination of active and passive shielding.

arXiv:1911.00481

- Composed of 500 RPC triplet modules
- Arranged into a 10 meter cube with 4 internal faces
- Potential BSM particle would pass through the shielding unimpeded
- Would decay into charged SM tracks
- Vertex would be reconstructed within the detector volume

Graphite laver

Sensitivity

CODEX-b offers a competitive sensitivity to a number of BSM models at a relatively low cost $\mathcal{O}(\$10 \text{ M})$:

- Abelian hidden sector
- Dark Higgs
- Axion-like particles
- Heavy neutral leptons
- R-parity violating supersymmetry
- Relaxation models
- Neutral naturalness
- Inelastic dark matter
- Dark matter coscattering
- Dark matter from sterile coannihilation
- Asymmetric dark matter
- Baryogenesis

lake Pfaller

- Hidden valleys
- And many more!

Lower limit on the branching ratio of Higgs decay to two dark photons, where the dark photons decay to leptons.

< ロ > < 回 > < 回 > < 回 > <</p>

COmpact Detector for EXotics at LHCb: CODEX-b

- LHCb to start using underground servers for run 4
- Original detector design can't fully be used
- Simulations show partial installations still yield similar reconstruction efficiencies
- Details on new design still need to be ironed out

arXiv:2203.07316

< (T) >

lake Pfaller

- LLP signal should be a displaced vertex
- Neutrons and K_L^0 produced at the interaction point can mimic the signal
- Secondary interactions in the shielding layers can produce neutrons and K_s^0 , mimicking signal
- Active veto embedded in the shield to remove most primary-produced backgrounds
- CODEX-β demonstrator to validate background estimates

Backgrounds

	Particle yields			
BG species	Net $(E_{\rm kin}^{\rm neutral} > 0.4 {\rm GeV})$	Shield veto rejection	Shield veto rejection	Net yield
		(total)	$(\pm/0 \text{ correlation})$	
γ	0.54 ± 0.12	$(8.06 \pm 0.60) \times 10^4$	$(2.62 \pm 1.03) \times 10^3$	-
n	58.10 ± 4.63	$(4.59 \pm 0.15) \times 10^5$	$(3.44 \pm 0.51) \times 10^4$	-
$n~(>0.8{\rm GeV})$	2.78 ± 0.25	$(1.03 \pm 0.06) \times 10^5$	$(7.45 \pm 1.92) \times 10^3$	$\lesssim 1$
\bar{n} (no cut)	$(3.24 \pm 0.72) \times 10^{-3}$	34.40 ± 25.80	$(7.12\pm2.19)\times10^{-2}$	$\ll 1$
K_L^0	0.49 ± 0.05	$(1.94 \pm 0.74) \times 10^3$	54.40 ± 19.20	$\lesssim 0.1$
K_S^0	$(6.33 \pm 1.39) \times 10^{-3}$	93.90 ± 45.80	0.74 ± 0.19	≪ 1
$\nu + \bar{\nu}$	$(5.69\pm 0.00)\times 10^{13}$	$(7.35 \pm 0.12) \times 10^{6}$	$(7.31 \pm 0.11) \times 10^6$	-
p^{\pm}	$(2.07 \pm 0.26) \times 10^2$	$(9.24 \pm 0.36) \times 10^5$	$(9.24 \pm 0.36) \times 10^5$	-
e^{\pm}	$(4.53 \pm 0.02) \times 10^3$	$(4.38 \pm 0.02) \times 10^{7}$	$(4.38 \pm 0.02) \times 10^{7}$	-
π^+	34.70 ± 2.27	$(2.96 \pm 0.20) \times 10^5$	$(2.96 \pm 0.20) \times 10^5$	-
π^-	31.40 ± 2.12	$(2.68 \pm 0.19) \times 10^5$	$(2.68 \pm 0.19) \times 10^5$	-
K^+	0.83 ± 0.30	$(3.08 \pm 1.24) \times 10^3$	$(3.08 \pm 1.24) \times 10^3$	-
K^-	0.23 ± 0.12	$(1.12 \pm 0.63) \times 10^3$	$(1.12\pm 0.63)\times 10^{3}$	-
μ^+	$(1.04\pm 0.00)\times 10^{6}$	$(1.04\pm 0.00)\times 10^{10}$	$(1.04\pm 0.00)\times 10^{10}$	-
μ^-	$(8.07\pm 0.01)\times 10^{5}$	$(8.07 \pm 0.01) \times 10^9$	$(8.07\pm 0.01)\times 10^{9}$	-

arXiv:1911.00481

Background simulation done using Pythia + Geant4 for $(20 + 5)\lambda$ shielding, active veto after 20λ shield. $\mathcal{L} = 300 \,\text{fb}^{-1}$.

Time-limited LHCb R&D project (approved!), with opportunity for non-LHCb members to collaborate.

- Scaled-down version of CODEX-b
- 2 meter cube, 14 RPC triplet modules
- Goals include:
 - Validate background estimates
 - Integrate with LHCb DAQ
 - Test the suitability of RPCs
 - Validate the mechanical support structure of the modules and detector

<<p>< □ > < 同 > < 三 >

- BIS7 model for the HL-LHC upgrade of the ATLAS muon spectrometer
- 1mm gas gap
- Electronics include a custom SiGe discriminator, sensitive to signals O(fC)
- Timing resolution $\mathcal{O}(100 \text{ ps})$
- Spacial resolution $\mathcal{O}(1 \text{ mm})$

arXiv:1806.04113

University of Cincinnati

COmpact Detector for EXotics at LHCb: CODEX-b

- Initial commissioning tests done with cosmic muons
- No need for commissioning in a high-radiation environment
- Test for:
 - Noise rates
 - False triggers
 - False muons
 - Hit correlations
 - Efficiency

イロト イヨト イヨト

University of Cincinnati

- Module frame and detector superstructure machined at the University of Cincinnati (US), shipped to CERN
- Frame is based on the BIS7 frame design, modified for our structural and rigidity needs
- Uses aluminum shims and skins to provide uniform pressure across the surface of the RPCs
- Interior components position the RPCs within the frame
- 3 frames currrently at CERN, remaining frames being produced

Image: A math a math

・ロト ・日下・ ・ ヨト・

- Modules can be brought underground via personnel elevator
- Rather tricky path to get from the elevator to the server room
- Specialized cart has been designed to transport our modules
- Partial installation targeted for October technical stop
- Full installation to take place in the coming YETS (December 2024 - March 2025)
- Data will be taken for the remainder of run 3

COmpact Detector for EXotics at LHCb: CODEX-b

- LHC needs a zero-background transverse LLP detector
- CODEX-b offers a competetive sensitivity to a number of minimal models at a relatively low cost
- Relative easy of construction and installation compared to other proposed LLP detectors
- CODEX- β is the demonstrator detector for run 3
- Will validate background estimates and integration with LHCb
- Construction is full-steam ahead!

Collaboration

Technical Design Report recently uploaded to the arXiv:2406.12880, submitted to JINST. Constitution and physics paper coming soon!

Image: A math a math

University of Cincinnati

We are welcoming new collaborators, come join us!

Thank you!

Backup

University of Cincinnati

University of Cincinnati

COmpact Detector for EXotics at LHCb: CODEX-b

Jake Pfaller

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - 20ペ

University of Cincinnati

Heavy Neutral Leptons

