The SHiP Experiment

Anne-Marie Magnan, Imperial College London I M P E R I A L

on behalf of the SHiP Collaboration

1st-5th July 2024, LLP 2024, Tokyo, Japan

Physics motivation

- Standard Model verified in many ways, but many fundamental questions left:
 - Neutrino masses and their origin,
 - Dark Matter,
 - Baryon asymmetry in the universe.
- Where is the new Physics ?
 - SHiP: look for very small SM couplings / couplings through portals, small masses (below few GeV), long-lived particles ($c\tau \simeq 50 100$ m).
 - Wide physics program:
 - Indirect evidence of new physics through precision measurements in the neutrino sector.
 - FOCUS OF THIS TALK: Direct searches for particles in the "hidden sector".

Hidden sectors and portals

Weakly-coupled new physics

- $\mathcal{L} = \mathcal{L_{SM}} + \mathcal{L_{Mediator}} + \mathcal{L_{HS}}$
 - Scalar portal: e.g. dark scalar, dark Higgs.
 - Vector portal: e.g. dark photon.
 - Axion-Like Particles (ALP) portal.
 - Fermion portal: e.g. heavy neutral leptons (HNL).

Example: the ν MSM 2.4 MeV 1.27 GeV 171.2 GeV 2/3 2/3 2/3 U С up charm top 104 MeV 4.2 GeV Left chirality -1/3 b -1/3 S strange bottom down <0.0001 eV ~0.01 eV ~0.04 eV οV-**Right chirality** tau teutring muor electr sterile 0.511 MeV 105.7 MeV Leptons e μ τ electron tau muor

- Minimal extension: add 3 right-handed Majorana neutrinos.
- N1: dark matter candidate.
- N2/N3: set active neutrino masses, create baryon asymmetry via leptogenesis.

A.-M. Magnan

SHiP

Introduction

0000

- 2013: Letter of Intent \Rightarrow arXiv:1310.1762 ٠
- 2015: Technical+Physics Proposals \Rightarrow arXiv:1504.04956/CERN-SPSC-2015-040
- 0 2019: Comprehensive Design Study Report \Rightarrow CERN-SPSC-2019-049
- 2023: BDF/SHiP at the ECN3 high-intensity beam facility \Rightarrow • CEBN-SPSC-2023-033.

SHiP detector

Unless stated otherwise, all figures taken from CERN-SPSC-2023-033. •

Conclusion

Dark scalars mixing with H

From Project to Experiment

- Approved by CERN in March 2024 ⇒ Moving to the Technical Design Report phase !
- Main update: change from planned ECN4 to existing ECN3 cavern configuration: downstream detector size reduced from 10 × 5 m² to 6 × 4 m².
- The SHiP collaboration in April 2024:

SHiP detector

Sensitivity

SHiP: a beam dump experiment

- Beam: SPS 400 GeV protons with 4 × 10¹⁹ protons-on-target (PoT) per year
- Full physics program: 15 years of running $\Rightarrow 6 \times 10^{20}$ PoT.
- Detector will seat in existing "TCC8/ECN3" caverns.

Each year, the target will produce:

- $\simeq 10^{17}$ charmed hadrons,
- $\simeq 10^{13}$ beauty hadrons,
- an unprecedented sample of $\nu_{ au}/\bar{
 u_{ au}}$

Design of the Target

 Target made with Ti-Zr-Mo alloy followed by pure W. Total: 12λ, followed by 5m-long hadron absorber.

Sim. temperature rise during pulse

A.-M. Magnan

SHiP detector

Sensitivity

Design of the Muon Shield

- From simulation, ≃ 2 × 10¹⁰ muons/spill out of hadron absorber with E> 10 GeV.
- New constraints on size from TCC8 cavern.
- Considering now Hybrid option ⇒ Design will be re-optimised for TDR.

EPJC 80 (2020) 3

Measured the flux at the H4 CEBN SPS beamline, in 2018

Muon flux measurement

- Obtained reasonably good agreement !
- Will rely heavily on the simulation for the final optimisation of the shield.

Key aspect to control shield design + estimate remaining muon background after shield.

ntroduct	ion	SHiP detector ○○○○○●○○○○	Sensitivity 0000000	Conclusion	
Phys	sics c	overage		Ŕ	
		Physics model	Final state		
		Dark photons	$\ell^+\pi^+, \ \ell^-K^+, \ \ell^+\rho^+, \ \ell^+\ell^-\nu$ $\ell^+\ell^-, 2\pi, 3\pi, 4\pi, KK, q\bar{q}, D\bar{D}$		
		Dark scalars	$\ell\ell, \pi\pi, KK, q\bar{q}, D\bar{D}, GG$		
		ALP (fermion coupling)	$\ell^+\ell^-, 3\pi, \eta\pi\pi, q\bar{q}$		
	HSDS	ALP (gluon coupling)	$\pi\pi\gamma, 3\pi, \eta\pi\pi, \gamma\gamma$		
		HNL	$\ell^+\ell^- u,\pi l, ho l,\pi^0 u,qar q'l$		
		Axino	$\ell^+\ell^- u$		
		ALP (photon coupling)	$\gamma\gamma$		
		SUSY sgoldstino	$\gamma\gamma, \ell^+\ell^-, 2\pi, 2K$		
	SND	$U = \overline{U}$ measurements	τ^{\pm}	51	
	5110	Neutrino-induced charm production $(\nu_e, \nu_\mu, \nu_\tau)$	$D_s^{\pm}, D^{\pm}, D^0, \overline{D^0}, \Lambda_c^+, \overline{\Lambda_c}^-$		
Signal reconstruction					
•	Track	ing to reconstruct decay vertex of	Background rejection		
	Charg		Background taggers:		
	Calor	imeters to measure neutral candidates	- Duonground tuggoro.		

- and invariant mass.
- Particle identification to further distinguish models.

- upstream and surrounding.
- Timing detectors.

- Baseline design similar to SND@LHC ⇒ See presentation from Masahiro Komatsu on Friday.
- Undergoing re-optimisation for neutrino physics and light dark matter.
- Advantage @ SHiP: large (anti-)neutrino yields expected: $\simeq 10^{6} [\nu_{e} + \bar{\nu_{e}}] + 10^{7} [\nu_{\mu} + \bar{\nu_{\mu}}] + 10^{5} [\nu_{\tau} + \bar{\nu_{\tau}}].$

The decay volume and surrounding background taggers - SBT

- The big question of this year: vacuum or helium ?
- Design highly dependent on pressure required inside.
- Still, main challenge is to minimise μ and ν interactions in the walls.
- Instrument the surrounding volume with efficient background taggers.
- ⇒ double-wall structure with liquid scintillator-based system with good timing and spatial resolution.

The spectrometer magnet and straw tracker

Spectrometer magnet

- Design: driven by physics aperture, 4×6 m² and vertical bending power > 0.65Tm over 4 tracking stations.
- Baseline design with normal-conducting materials. Studies ongoing for using superconducting technologies.

Straw tracker

- 4-layer straw tracker ⇒ Measure trajectories and momenta of particles, reconstruct decay vertices and impact parameter at proton target.
- Inspired by NA62 design.
- Main challenge: mechanical properties of straw tubes.
- Being redesigned for ECN3 dimensions.

Four-straw prototype with carbon fibre suspension under test in Hamburg.

able length: ~ 3 km

The Timing and PID detectors

Timing detector

- Made of scintillators+SiPM.
- Measure coincidences ⇒ reject combinatorial bkg.
- Need time resolution < 100 ps.</p>
- For TDR: validate calibration procedure and readout electronics.
- WIP: measure time-of-flight for *p* < 10 GeV tracks ⇒ use in PID.

PID system

- Requirements:
 - Reconstruct e and γ showers with angular resolution $\simeq 5$ mrad for $\gamma\gamma$ FS.
 - Discriminate between hadrons and muons.
- CDS design: EM calorimeter + muon detectors.

Introduction	SHiP detector	Sensitivity ●000000	Conclusion	
A Zero background experiment				

- Use simple criteria to suppress backgrounds whilst keeping high signal efficiency, valid for all signals.
- Optimisation still ongoing.

Global analysis strategy

- Searches for HNL, dark photons and RPV SUSY designed with full simulation.
- In good agreement with SensCalc tool https://zenodo.org/record/8034735, used for other channels and further optimisation.
- All results for 15 years of running ⇔ 6.10²⁰ PoT, 90%CL limits (⇒2.3 events for 0 bkg).
- Results for other experiments from arXiv:2305.01715.

Background estimates

Background source	Expected events
Neutrino DIS	< 0.1 (fully) / < 0.3 (partially)
Muon DIS (factorisation)	$< 5 \times 10^{-3}$ (fully) / < 0.2 (partially)
Muon combinatorial	$(1.3 \pm 2.1) \times 10^{-4}$

 With high statistics, can also further separate models using invariant mass.

Dark Photons - vector portal

Minimal hidden U(1) extension of the SM:

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} - \frac{1}{4} \mathcal{F}'_{\mu\nu} \mathcal{F}'^{\mu\nu} + \frac{m_{\gamma'}^2}{2} \mathcal{A}'_{\mu} \mathcal{A}'^{\mu} - \frac{\epsilon}{2} \mathcal{F}'_{\mu\nu} \mathcal{F}^{\mu\nu}$$

Kinetic mixing e

$$\overbrace{}^{\gamma'} \overbrace{\epsilon}^{\varphi} \overbrace{\gamma}$$

- Produced in QCD, bremstrahlung or meson decays.
- Decays to visible particles.

Updated sensitivity to Dark Photons

Updated sensitivity to Dark Scalars

Produced in exclusive decays $B \rightarrow S + X_{s/d}$

Conclusion

- TDR is expected by 2027 for commissioning starting in 2031.
- The real work starts now, plenty of opportunities available !

Thank you for your attention

[When we don't know where we're going, we should go there !!... and as fast as possible.]

BACKUPS

To be re-optimised.

Criterion	Requirement
Track momentum	$> 1.0 \mathrm{GeV}/c$
Track pair distance of closest approach	$< 1 \mathrm{cm}$
Track pair vertex position in decay volume	$> 5 \mathrm{cm}$ from inner wall
	$> 100 \mathrm{cm}$ from entrance (partially)
Impact parameter w.r.t. target (fully reconstructed)	$< 10 \mathrm{cm}$
Impact parameter w.r.t. target (partially reconstructed)	$< 250\mathrm{cm}$