Simplified t-channel dark matter models and LLPs Dipan Sengupta University of New South Wales, Sydney With C.P-Yuan, B. Yan, K. Mohan, Tim Tait, Matthias Becker, Emanuele Copello

and Julia Harz + LHC-t-channel Dark Matter Working Group

Simplified t-channel dark matter models and LLPs Dipan Sengupta University of New South Wales, Sydney With C.P-Yuan, B. Yan, K. Mohan, Tim Tait, Matthias Becker, Emanuele Copello

and Julia Harz + LHC-t-channel Dark Matter Working Group

Properties and the Particle Physics of Dark Matter

- Cold and Neutral: Non relativistic today.
- Preserves the success of Big Bang Nucleosynthesis (Formation of Atoms and Nuclei in the early Universe)
- "Almost" **Dark** with respect to other forces of nature.
- Collisionless within the DM sector at large scales.
- Stable, on Cosmological time scales.
- Forms halos in the galaxy

Dark Matter belongs in Astronomy/Cosmology. Why should we care about colliders?

Dark Matter at Colliders

Comment: Even in the event of a

missing energy signature, we can't be sure it is dark matter

Supersymmetry as an Example

Supersymmetry as an Example

Supersymmetry as an Example

Supersymmetry as an Example

 $\frac{g}{M_{\tilde{\pi}}^2} \leftrightarrow G_{eff}$

Supersymmetry as an Example

the relic density and direct detection rates. For heavy mediators, can integrate the mediator out And classify the DM by spin

Supersymmetry as an Example

Majorana Dark Matter: 10 operators with an EFT strength M

Majorana Dark Matter: 10 operators with an EFT strength M

Name	Type	G_{χ}	Γ^{χ}	Ι
M1	qq	$m_{q}/2M_{*}^{3}$	1	
M2	qq	$im_q/2M_*^3$	γ_5	
M3	qq	$im_{q}/2M_{*}^{3}$	1	~
M4	qq	$m_{q}/2M_{*}^{3}$	γ_5	~
M5	qq	$1/2M_{*}^{2}$	$\gamma_5\gamma_\mu$	
M6	qq	$1/2M_{*}^{2}$	$\gamma_5\gamma_\mu$	γ_5
M7	GG	$\alpha_s/8M_*^3$	1	
M8	GG	$i\alpha_s/8M_*^3$	γ_5	
M9	$G\tilde{G}$	$\alpha_s/8M_*^3$	1	
M10	$G\tilde{G}$	$i\alpha_s/8M_*^3$	γ_5	

 $G_{\chi} \left[\bar{\chi} \Gamma^{\chi} \chi \right] G^{2}$ $\sum_{q} G_{\chi} \left[\bar{q} \Gamma^{q} q \right] \left[\bar{\chi} \Gamma^{\chi} \chi \right]$

- $+ 2(m + m m_{\chi})(m m + m_{\chi})(m + m + m_{\chi})\{m_{\chi}(m m m_{\chi})(m m 5m_{\chi})\}$
- $(m + M m_{\chi})(m M + m_{\chi})(-m + M + m_{\chi})^{2}(m + M + m_{\chi})\log(\frac{m}{M})\}$

with an

$$f_N/m_N = \sum_{q=u,d,s} f_{Tq}(f_q) + \sum_{q=u,d,s,c,b} \frac{3}{4} \left[q(2) + \bar{q}(2) \right] \left(g_q^{(1)} + g_q^{(2)} \right) - \frac{8\pi}{9\alpha_s} f_{TG}(f_G) + \frac{3}{4} G(2) \left(g_G^{(1)} + g_G^{(2)} \right) .$$

Full Models vs EFTs

Name	Type	G_{χ}	Γ^{χ}	Ι
M1	qq	$m_{q}/2M_{*}^{3}$	1	
M2	qq	$im_q/2M_*^3$	γ_5	
M3	qq	$im_q/2M_*^3$	1	
M4	qq	$m_{q}/2M_{*}^{3}$	γ_5	
M5	qq	$1/2M_{*}^{2}$	$\gamma_5\gamma_\mu$	
M6	qq	$1/2M_{*}^{2}$	$\gamma_5\gamma_\mu$	γ_5
M7	GG	$\alpha_s/8M_*^3$	1	
M8	GG	$i\alpha_s/8M_*^3$	γ_5	
M9	$G\tilde{G}$	$\alpha_s/8M_*^3$	1	
M10	$G\tilde{G}$	$i\alpha_s/8M_*^3$	γ_5	

 $G_{\chi}\left[ar{\chi}\Gamma^{\chi}\chi
ight]G^{2}$ $\sum G_{\chi} \left[ar{q} \Gamma^q q
ight] \left[ar{\chi} \Gamma^\chi \chi
ight]$ \boldsymbol{q}

- $+ 2(m + m m_{\chi})(m m + m_{\chi})(m + m + m_{\chi})\{m_{\chi}(m m m_{\chi})(m m 5m_{\chi})\}$
- $(m + M m_{\chi})(m M + m_{\chi})(-m + M + m_{\chi})^{2}(m + M + m_{\chi})\log(\frac{m}{M})\}$

with an

$$f_N/m_N = \sum_{q=u,d,s} f_{Tq}(f_q) + \sum_{q=u,d,s,c,b} \frac{3}{4} \left[q(2) + \bar{q}(2) \right] \left(g_q^{(1)} + g_q^{(2)} \right) - \frac{8\pi}{9\alpha_s} f_{TG}(f_G) + \frac{3}{4} G(2) \left(g_G^{(1)} + g_G^{(2)} \right) .$$

Full Models vs EFTs

Name	Type	G_{χ}	Γ^{χ}	Ι
M1	qq	$m_{q}/2M_{*}^{3}$	1	
M2	qq	$im_q/2M_*^3$	γ_5	
M3	qq	$im_q/2M_*^3$	1	
M4	qq	$m_{q}/2M_{*}^{3}$	γ_5	
M5	qq	$1/2M_{*}^{2}$	$\gamma_5\gamma_\mu$	
M6	qq	$1/2M_{*}^{2}$	$\gamma_5\gamma_\mu$	γ_5
M7	GG	$\alpha_s/8M_*^3$	1	
M8	GG	$i\alpha_s/8M_*^3$	γ_5	
M9	$G\tilde{G}$	$\alpha_s/8M_*^3$	1	
M10	$G\tilde{G}$	$i\alpha_s/8M_*^3$	γ_5	

 $G_{\chi}\left[ar{\chi}\Gamma^{\chi}\chi
ight]G^{2}$ $\sum G_{\chi} \left[ar{q} \Gamma^q q
ight] \left[ar{\chi} \Gamma^\chi \chi
ight]$

- $+ 2(m + m m_{\chi})(m m + m_{\chi})(m + m + m_{\chi})\{m_{\chi}(m m m_{\chi})(m m 5m_{\chi})\}$
- $(m + M m_{\chi})(m M + m_{\chi})(-m + M + m_{\chi})^{2}(m + M + m_{\chi})\log(\frac{m}{M})\}$

with an

$$f_N/m_N = \sum_{q=u,d,s} f_{Tq}(f_q) + \sum_{q=u,d,s,c,b} \frac{3}{4} \left[q(2) + \bar{q}(2) \right] \left(g_q^{(1)} + g_q^{(2)} \right) - \frac{8\pi}{9\alpha_s} f_{TG}(f_G) + \frac{3}{4} G(2) \left(g_G^{(1)} + g_G^{(2)} \right) .$$

Full Models vs EFTs

Name	Type	G_{χ}	Γ^{χ}	Ι
M1	qq	$m_{q}/2M_{*}^{3}$	1	
M2	qq	$im_q/2M_*^3$	γ_5	
M3	qq	$im_{q}/2M_{*}^{3}$	1	
M4	qq	$m_{q}/2M_{*}^{3}$	γ_5	
M5	qq	$1/2M_{*}^{2}$	$\gamma_5\gamma_\mu$	
M6	qq	$1/2M_{*}^{2}$	$\gamma_5\gamma_\mu$	γ_5
M7	GG	$\alpha_s/8M_*^3$	1	
M8	GG	$i\alpha_s/8M_*^3$	γ_5	
M9	$G\tilde{G}$	$\alpha_s/8M_*^3$	1	
M10	$G\tilde{G}$	$i\alpha_s/8M_*^3$	γ_5	

 $G_{\chi}\left[ar{\chi}\Gamma^{\chi}\chi
ight]G^{2}$ $\sum G_{\chi} \left[ar{q} \Gamma^q q
ight] \left[ar{\chi} \Gamma^\chi \chi
ight]$

- + $2(m+M-m_{\chi})(m-M+m_{\chi})(m+M+m_{\chi})\{m_{\chi}(m-M-m_{\chi})(m-M-5m_{\chi})\}$
- $(m + M m_{\chi})(m M + m_{\chi})(-m + M + m_{\chi})^{2}(m + M + m_{\chi})\log(\frac{m}{M})\}$

 $\overline{192\pi m_{\chi}^4(m+M-m_{\chi})^2(m-3MPRINCIPLES+OF)^2} WHMP+DIRECT DETECTION$

with an

$$f_N/m_N = \sum_{q=u,d,s} f_{Tq}(f_q) + \sum_{q=u,d,s,c,b} \frac{3}{4} \left[q(2) + \bar{q}(2) \right] \left(g_q^{(1)} + g_q^{(2)} \right) - \frac{8\pi}{9\alpha_s} f_{TG}(f_G) + \frac{3}{4} G(2) \left(g_G^{(1)} + g_G^{(2)} \right) .$$

 $p_{T,jet}$ (GeV)

M6

 $m_{\chi} = 5 \text{ GeV}$

Full Models vs EFTs

Name Type $\Gamma \chi$ G_{χ} $m_{q}/2M_{*}^{3}$ 1 qq $im_q/2M_*^3$ M2 γ_5 qq $im_{q}/2M_{*}^{3}$ M3qq $m_{q}/2M_{*}^{3}$ M4 γ_5 qq $1/2M_{*}^{2}$ M5 $\gamma_5\gamma_\mu$ qq $2M_{*}^{2}$ M6 $\gamma_5\gamma_\mu$ qq $\alpha_s/8M_*^3$ M7GG $i\alpha_s/8M_*^3$ M8GG γ_5 $\alpha_s/8M_*^3$ GGM9 $i\alpha_s/8M_*^3$ GG γ_5 Tevatron

> $G_{\chi}\left[\bar{\chi}\Gamma^{\chi}\chi
> ight]G$ $\int G_{\chi} \left[\bar{q} \Gamma^{q} q \right] \left[\bar{\chi} \Gamma^{\chi} \chi \right]$

perators transfer in explai letection

dels y	s EF F s tperform c	ider ez lirect o	xperime detectio	ents ca on exp	an access 1 eriments b	ntera y abc
in a lar r, collide	gepart of a Llamed	parame have	et er spa fready	ice, Fo	or operator d constrain	s whi nts on
anation	pr IMA MA	qq	m_{q}	$_{ m q}/2N$	$I_*^3 1$	
	M2	q c	•		<i>⊪</i> ⊰	
	M3	$q\zeta$	Name	Type	G_{χ}	Γ^{χ}
	M4	$q\zeta$	M1 $M2$	$\begin{array}{c} qq \\ qq \end{array}$	$m_q/2M_*$ $im_q/2M_*^3$	
	M5	$q\zeta$	M3	qq	$im_{q}^{4}/2M_{*}^{3}$	$\left \begin{array}{c} UCI \\ 1 \end{array} \right $
t (ordei Þjæf ð	na Mbar	Ma 🕅	M4 .t ter	$\mathbf{fr}_{\mathbf{Q}}^{qq}$	$m_q/2M_*^3$	γ_5 ers _µ
kil mod	M7	G(M6	qq	$1/2M_{*}^{2}$	$\gamma_5 \gamma_\mu$
ajaranea	n, Midian	Sher	herd,	TGG I	Mag/8Nait,	and
Pi Pi	$gus \mathbf{N} \mathbf{I} 9, 20$	G (M9	GĜ	$\alpha_s/8M_*^3$	$\frac{97}{5}$
	in 16 li		.M10 Jorana	GĜ dark 1	$i \alpha_{\rm s} / 8 M_{\rm arr}^3$ matter pår	ticlés.
Tevatron M6 $m_X = 5 \text{ GeV}$	icles. TABL	MPs E.I: Th der ex	to dire ne list o perime	ct det f the e nts ca	$G_{\chi} \left[\bar{\chi} \Gamma^{\chi} \chi \right] $	q ² lor
20 240 260 280 300	tperform di	irect d	etectio		Galais	aber
s in af lare	ge part of p	aramet	ter spa read Of		voperators rators may be	whic scewrit
nation fo n exper-	or DAMA.	I	• Goodn	form by nan, Ibe, Raja	using Fierz tr Traman, Shepherd, TM	ansforn IPT, Yu 1005
-						

10 ²	
Μ	

dels v	SEF IS	luer ex		ents ca	an access	
s, and ou s in a lar	g e part of	nrect c Darame	ter spa	n exp ce, Fc	n operato;	sy abo rs whi
r, collide	i Name	havePa	Fready	Haxe	d constrai	nts on
anation	or IMA.	qq	m_{e}	$_{ m I}/2N$	$I_*^3 \mid 1$	
	M2	q_{ζ}	•		 <i>π</i> 3	
	M3	$q \epsilon$	Name	Type	G_{χ}	Γ^{χ}
	M4		$\frac{M1}{M2}$	qq	$\left \frac{m_q}{2M_*^3} \right $	$3 \qquad 1 \qquad \gamma_{r}$
	M5		M3	qq	$\left \frac{im_q}{2M_*}\right ^2$	$_{3} \mid U_{1}^{CI}$
t (order	Nf6		M4	qq from	$m_q/2M_*^3$	γ_5
parte					1 1 2 1 2 1 2	16758μ
sul mod	MT		M6	qq	$1/2M_{*}^{2}$	$\gamma_5 \gamma_\mu$
	n, Malan	Shep	herd,		VIAB/81/ait	, and
12 Axial Vector – 11 Axial Vector –	Triversity	T C'àli	townsa,		$e_{i}\alpha_{s'}ASIM_{k}$	$59'7\gamma_5$
12 – 12 2012 – 1	gus i/19 , 20		M9	$GG_{\tilde{a}}$	$\alpha_s/8M_*^3$	1
2011 - 2012 - 20	in 16 li	hGMa	.M10 jorana	GG dark 1	$i \alpha_{s} / 8 M_{*}^{3}$	rticlés.
W⁺W ⁻	TABL	MPs t E I: Th	o dire	ct_det	$G_{\gamma}[ar{\chi}\Gamma^{\chi}\chi]$	G^2
	ches. Com	irect de				
	re part of p	aramet	erspa			
	searches l	nave al	real Of	ther one	ratons may b	esewrit
	r DAMA		this	form by	using Fierz t	ransform
ا _{َي} [GeV/c ²] –		Į Į	Goodn	nan, Ibe, Raja	iraman, Shepherd, T	MPT,Yu 1005
-						

EFTs vs Simplified Models

 $\mathcal{L}_{\text{DM-EFT}} = \sum_{f=u,d,s,c,b,t,e,\mu,\tau} \left(\frac{C_1^f}{\Lambda^2} \bar{f} f \bar{\chi} \chi + \frac{C_2^f}{\Lambda^2} \bar{f} \gamma_5 f \bar{\chi} \gamma_5 \chi + \cdots \right)$

on PDFs, therefore hard to be absolutely quantitative

$$\left\{m_{\chi}, \ C_n^f/\Lambda^2\right\}$$
 Justified for $q^2 \ll \Lambda$

The breakdown of EFT is "time-dependent", since energies probed by LHC depend

EFTs vs Simplified Models

 $\mathcal{L}_{\text{DM-EFT}} = \sum_{f=u,d,s,c,b,t,e,\mu,\tau} \left(\frac{C_1^J}{\Lambda^2} \bar{f} f \bar{\chi} \chi + \frac{C_2^f}{\Lambda^2} \bar{f} \gamma_5 f \bar{\chi} \gamma_5 \chi + \cdots \right)$

on PDFs, therefore hard to be absolutely quantitative

$$\left\{m_{\chi}, \ C_n^f/\Lambda^2\right\}$$
 Justified for $q^2 \ll \Lambda$

The breakdown of EFT is "time-dependent", since energies probed by LHC depend

Simplified Models

S-channel mediators : Masses can be

try to write d some theories mediators exp

- - S-channel mediators : Masses can be

try to write d some theories

t- channel Simplified Models

Relic Density/velocity averaged cross-section

Velocity independent part (s wave) Velocity dependent part (p wave)

$$\left.\frac{\overline{m_{\tilde{q}}^4}}{\frac{2}{\tilde{q}})^4} + \mathcal{O}(m_f^2)\right\} \right]$$

Relic Density/velocity averaged cross-section m_{χ}) $(m - M + m_{\chi})(-m + M + m_{\chi})^2(m + M + m_{\chi})\log(\frac{m}{M})$

Spin-Spin-

$$f_N/m_N = \sum_{q=u,d,s} f_{Tq}(f_q) + \sum_{q=u,d,s,c,b} \frac{3}{4} \left[q(2) + \bar{q}(2) \right] \left(g_q^{(1)} + g_q^{(2)} \right) - \frac{8\pi}{9\alpha_s} f_{TG}(f_G) + \frac{3}{4} G(2) \left(g_G^{(1)} + g_G^{(2)} \right) .$$

+ $t_2(nchangel-Simplified_Nodels-m_{\chi})(m^2 - M^2 - 3m_{\chi}^2)$

 $192\pi m_{x}^{4}(\underline{m} + \underline{M_{x}}, \underline{m_{x}})^{2}(\underline{m} - \underline{3}M PRINCHPLES + \underline{O}F)^{2}WHMP + \underline{D}RECT DETECTION$

+ $t_2(nchannel-Simplified_Nodels-m_{\chi})(m^2 - M^2 - 3m_{\chi}^2)$

Relic Density/velocity averaged cross-section $m_{\chi}(m-M+m_{\chi})(m+M+m_{\chi})^2(m+M+m_{\chi})\log(\frac{m}{M})$

 $\frac{192\pi m_{x}^{4}(m_{2} + M_{x} + m_{x})^{2}(m_{1} - 3M PRINCHPLES + OF)^{2}WHMP + DARECT DETECTION}{DETECTION}$

$$+ \sum_{q=u,d,s,c,b} \frac{3}{4} \left[q(2) + \bar{q}(2) \right] \left(g_q^{(1)} + g_q^{(2)} \right)$$

+
$$\frac{3}{4} G(2) \left(g_G^{(1)} + g_G^{(2)} \right) .$$

$$+ 2(m + M - m_{\chi})(m - M + m_{\chi})(m + M + m_{\chi}) \{m_{\chi}^{2}(m - M - m_{\chi})(m^{2} - M^{2} - 3m_{\chi}^{2}) - (m + M - m_{\chi})(m - M + m_{\chi})(-m + M + m_{\chi})^{2}(m + M + m_{\chi})\log(\frac{m}{M})\}]$$

$$(22)$$

$$\times \quad \overline{192\pi m_{\chi}^4 (m+M-m_{\chi})^2}$$

$$f_N/m_N = \sum_{q=u,d,s} f_{Tq}(f_q) + \sum_{q=u,d,s,c,b} \frac{3}{4} \left[q(2) + \bar{q}(2) \right] \left(g_q^{(1)} + g_q^{(2)} \right) - \frac{8\pi}{9\alpha_s} f_{TG}(f_G) + \frac{3}{4} G(2) \left(g_G^{(1)} + g_G^{(2)} \right) .$$

)² $(m - 3M PRINCPLES + OF)^2 WHMP + DIRECT DETECTION$

$$+ 2(m + M - m_{\chi})(m - M + m_{\chi})(m + M + m_{\chi}) \{m_{\chi}^{2}(m - M - m_{\chi})(m^{2} - M^{2} - 3m_{\chi}^{2}) - (m + M - m_{\chi})(m - M + m_{\chi})(-m + M + m_{\chi})^{2}(m + M + m_{\chi})\log(\frac{m}{M})\}]$$

$$(22)$$

$$\times \quad \frac{192\pi m_{\chi}^4 (m+M-m_{\chi})^2}{192\pi m_{\chi}^4 (m+M-m_{\chi})^2}$$

 $f_N/m_N = \sum_{q=u,d,s} f_{Tq}(f_q)$ $- \frac{8\pi}{9\alpha_s} f_{TG}(f_G) +$

 $)^{2}(m - 3M PRINCIPLES + OF)^{2}WHMP + DIRECT DETECTION$

$$+ \sum_{q=u,d,s,c,b} \frac{3}{4} [q(2) + \bar{q}(2)] \left(g_q^{(1)} + g_q^{(2)} \right)$$

+
$$\frac{3}{4} G(2) \left(g_G^{(1)} + g_G^{(2)} \right) .$$

t- channel Simplified Models

See K. Mohan, DS, T. Tait, B.Yan, C.P. Yuan. JHEP 05 (2019) 115 for details

Precision Calculations can significantly improve constraints on the coupling (DM interaction)

Coannihilations, Radiative and Non- \mathbb{P}_{n_i} erturbative Effects in Relic Density Calculation

Let's go deeper into the same model, i=1think of small mass gap between DM and mediator

Large mass gap,

$$\delta \equiv \frac{m_X - m_\chi}{m_\chi} \equiv \frac{\Delta m}{m_\chi}, \quad \Delta m \equiv m_X$$

$$+\beta g_s^2)^2 e^{-2x\delta} \qquad g_s^4 e^{-2x\delta} \qquad \delta = \frac{\Delta}{m_{\rm DM}}$$

Technische Universität München

Coannihilations, Radiative and Non-Perturbative Effects in Relic Density Calculation Let's go deeper into the same model, $n = \sum_{i=1}^{n} \overline{n_i} \sum_{i \neq \mp 1}^{n_i n_i} \delta \equiv \frac{m_X - m_\chi}{m_X} \equiv \frac{\Delta m}{m_X}, \quad \Delta m \equiv m_X - m_X$ think of small mass gap between DM and mediator

Large mass gap,

$$\delta \equiv \frac{m_X - m_\chi}{m_\chi} \equiv \frac{\Delta m}{m_\chi}, \quad \Delta m \equiv m_X$$

$$\delta \equiv \frac{m_X - m_\chi}{m_\chi} \equiv \frac{\Delta m}{m_\chi}, \quad \Delta m \equiv m_X$$

$$\delta \equiv \frac{m_X - m_\chi}{m_\chi} \equiv \frac{\Delta m}{m_\chi}, \quad \Delta m \equiv m_X$$

$$\int \frac{dn}{dt} + 3Hn = -\langle \sigma_{\rm eff} v \rangle \langle n^2 - n \rangle \langle \sigma_{\rm eff} v_{\rm rel} \rangle = \sum_{ij} \langle \sigma_{ij} v_{ij} \rangle \frac{n_{\rm eq,3}}{n_{\rm eq}}$$

$$\langle \sigma_{\rm eff} v_{\rm rel} \rangle = \sum_{ij} \langle \sigma_{ij} v_{ij} \rangle \frac{n_{\rm eq,3}}{n_{\rm eq}}$$

$$\int \frac{2\pi\delta}{m_{\rm DM}} \delta = \int \frac{\Delta}{m_{\rm DM}} \delta = \int \frac{\Delta m}{m_{\rm DM}} \delta = \int \frac{\Delta m}{m_$$

Coannihilations, Radiative and Non-Perturbative Effects in Relic Density Calculation $n = \sum_{i=1}^{n} \overline{n_i} \sum_{i=i \pm 1}^{n} \overline{n_i}$ Let's go deeper into the same model, think of small mass gap between DM and mediator q_i $X_{j} dn = q_{j} \qquad X_{j}^{\dagger} \qquad ar{q}_{j} \ -2x\delta \qquad (lpha g_{ m DM}^{2} - 2x\delta) \ (lpha g_{ m DM}^{2} + eta g_{s}^{2})$ q_i

 $\langle \sigma_{\rm eff} v_{\rm rel} \rangle =$

arge mass gap

processortasmalhmassugapyeadditionalec example of the provide the president of - Julia Harz Assumptions:

 $\begin{array}{c}g^2_{\rm DM}g^2_{\rm s}e^{-x\delta}_2\\g^2_{\rm DM}g^2_{\rm s}e^{-x\delta}\end{array}$

- Coannihilating particle will later decay into I
- Coannihilating particle in thermal equilibriu

Two further novel effects can affect the velocity averaged cross section

$$\delta \equiv \frac{m_X - m_\chi}{m_\chi} \equiv \frac{\Delta m}{m_\chi}, \quad \Delta m \equiv m_X$$

$$\delta \equiv \frac{m_X - m_\chi}{m_\chi} \equiv \frac{\Delta m}{m_\chi}, \quad \Delta m \equiv m_X$$

$$\delta \equiv \frac{m_X - m_\chi}{m_\chi} \equiv \frac{\Delta m}{m_\chi}, \quad \Delta m \equiv m_X$$

$$\frac{\delta \equiv \frac{m_X - m_\chi}{m_\chi} \equiv \frac{\Delta m}{m_\chi}, \quad \Delta m \equiv m_X$$

$$\frac{\delta \equiv \frac{m_X - m_\chi}{m_\chi} \equiv \frac{\Delta m}{m_\chi}, \quad \Delta m \equiv m_X$$

$$\frac{\delta \equiv \frac{m_X - m_\chi}{m_\chi} \equiv \frac{\Delta m}{m_\chi}, \quad \Delta m \equiv m_X$$

$$\frac{\delta \equiv \frac{m_X - m_\chi}{m_\chi} \equiv \frac{\Delta m}{m_\chi}, \quad \Delta m \equiv m_X$$

$$\frac{\delta \equiv \frac{m_X - m_\chi}{m_\chi} \equiv \frac{\Delta m}{m_\chi}, \quad \Delta m \equiv m_X$$

$$\frac{\delta \equiv \frac{m_X - m_\chi}{m_\chi} \equiv \frac{\Delta m}{m_\chi}, \quad \Delta m \equiv m_X$$

$$\frac{\delta \equiv \frac{m_X - m_\chi}{m_\chi} \equiv \frac{\Delta m}{m_\chi}, \quad \Delta m \equiv m_X$$

$$\frac{\delta \equiv \frac{m_X - m_\chi}{m_\chi} \equiv \frac{\Delta m}{m_\chi}, \quad \Delta m \equiv m_X$$

$$\frac{\delta \equiv \frac{m_X - m_\chi}{m_\chi} \equiv \frac{\Delta m}{m_\chi}, \quad \Delta m \equiv m_X$$

$$\frac{\delta \equiv \frac{m_X - m_\chi}{m_\chi} \equiv \frac{\Delta m}{m_\chi}, \quad \Delta m \equiv m_X$$

$$\frac{\delta \equiv \frac{m_X - m_\chi}{m_\chi} \equiv \frac{\Delta m}{m_\chi}, \quad \Delta m \equiv m_X$$

$$\frac{\delta \equiv \frac{m_X - m_\chi}{m_\chi} \equiv \frac{\Delta m}{m_\chi}, \quad \Delta m \equiv m_X$$

$$\frac{\delta \equiv \frac{m_X - m_\chi}{m_\chi} \equiv \frac{\Delta m}{m_\chi}, \quad \Delta m \equiv m_X$$

$$\frac{\delta \equiv \frac{m_X - m_\chi}{m_\chi} \equiv \frac{\Delta m}{m_\chi}, \quad \Delta m \equiv m_X$$

$$\frac{\delta \equiv \frac{m_X - m_\chi}{m_\chi} \equiv \frac{\Delta m}{m_\chi}, \quad \Delta m \equiv m_X$$

$$\frac{\delta \equiv \frac{m_X - m_\chi}{m_\chi} \equiv \frac{\Delta m}{m_\chi}, \quad \Delta m \equiv m_X$$

$$\frac{\delta \equiv \frac{m_X - m_\chi}{m_\chi} \equiv \frac{\Delta m}{m_\chi}, \quad \Delta m \equiv m_X$$

$$\frac{\delta \equiv \frac{m_X - m_\chi}{m_\chi} \equiv \frac{\Delta m}{m_\chi}, \quad \Delta m \equiv m_X$$

$$\frac{\delta \equiv \frac{m_X - m_\chi}{m_\chi} \equiv \frac{\Delta m}{m_\chi}, \quad \Delta m \equiv m_X$$

$$\frac{\delta \equiv \frac{\delta m}{m_\chi}, \quad \Delta m \equiv m_X$$

$$\frac{\delta \equiv \frac{\delta m}{m_\chi}, \quad \Delta m \equiv m_X$$

$$\frac{\delta \equiv \frac{\delta m}{m_\chi}, \quad \Delta m \equiv m_X$$

$$\frac{\delta \equiv \frac{\delta m}{m_\chi}, \quad \Delta m \equiv m_X$$

$$\frac{\delta \equiv \frac{\delta m}{m_\chi}, \quad \Delta m \equiv m_X$$

$$\frac{\delta \equiv \frac{\delta m}{m_\chi}, \quad \Delta m \equiv m_X$$

$$\frac{\delta \equiv \frac{\delta m}{m_\chi}, \quad \Delta m \equiv m_X$$

$$\frac{\delta \equiv \frac{\delta m}{m_\chi}, \quad \Delta m \equiv m_X$$

$$\frac{\delta \equiv \frac{\delta m}{m_\chi}, \quad \Delta m \equiv m_X$$

$$\frac{\delta \equiv \frac{\delta m}{m_\chi}, \quad \Delta m \equiv m_X$$

$$\frac{\delta \equiv \frac{\delta m}{m_\chi}, \quad \Delta m \equiv m_X$$

$$\frac{\delta \equiv \frac{\delta m}{m_\chi}, \quad \Delta m \equiv m_X$$

$$\frac{\delta \equiv \frac{\delta m}{m_\chi}, \quad \Delta m \equiv m_X$$

$$\frac{\delta \equiv \frac{\delta m}{m_\chi}, \quad \Delta m \equiv m_X$$

$$\frac{\delta \equiv \frac{\delta m}{m_\chi}, \quad \Delta m \equiv m_X$$

$$\frac{\delta \equiv \frac{\delta m}{m_\chi}, \quad \Delta m \equiv m_X$$

$$\frac{\delta \equiv \frac{\delta m}{m_\chi}, \quad \Delta m \equiv m_X$$

$$\frac{\delta \equiv \frac{\delta m}{m_\chi}, \quad \Delta m \equiv m_X$$

$$\frac{\delta \equiv \frac{\delta m}{m_\chi}, \quad \Delta m \equiv m_X$$

$$\frac{\delta m}{m_\chi}, \quad \Delta m \equiv m_X$$

$$\frac{\delta \equiv \frac{\delta m}{m_\chi}, \quad \Delta m \equiv m_X$$

$$\left(rac{\omega}{\mathrm{el}}
ight)^n \sim 1$$
 , which requires resu σ_{s}

Julia Harz

Importance of non-perturbative effects for the exclusion or discovery of dark matter models

Bound State Formation $\left|-\frac{\nabla^2}{2\mu}+V^{\mathrm{S}}_{[\hat{\mathbf{R}}]}(\mathbf{r})\right|$ Programm **DFG**

$$\sigma_{\rm SE} = S_0 \left(\frac{\alpha_s^S C_{[\hat{\mathbf{R}}]}}{v_{\rm rel}} \right) \sigma_0$$

Julia Harz

Importance of non-perturbative effects for the exclusion or discovery of dark matter models

Emmy

Julia Harz

Importance of non-perturbative effects for the exclusion or discovery of dark matter models

bound state formation bound state ionisation

bound state decay

bound state formation bound state ionisation

bound state decay

Impact of Sommerfeld Enhancement and bound states

perturbative only

+ Sommerfeld effect

- DD and LHC searches set upper bound on g_{DM}
- Requirement of non-overproduction sets lower bound on g_{DM}
 - \rightarrow Correction on g_{DM} due to SE and BSF lead to altered exclusion limits
 - → opens up parameter space that was previously thought to be excluded

The package is now implemented in MicrOmegas Dark Matter Tool

+ bound states

1. The model tightly constrained by Direct Detection, 2. Model parameters then relaxed by SE + BSF.

M. Becker, E. Copello, J. Harz K. Mohan, DS. JHEP08(2022) 145

t- channel Simplified Models : Bound State Production/decay at LHC

Theoretical Prediction for the uR model

For large stoponium masses, could lead to emerging/displaced photons

 $100 \text{ GeV} \lesssim m_X \lesssim 290 \text{ GeV}$

t- channel Simplified Models : HSCP searches

• Heavy: Implies slow particles, $\beta < 1.0$

Stable: Lives long enough so it can reach tracker and/or muon detectors or even get past them.

Charged: Can be detected by the muon detectors.

* The massive colored mediator X travels the detector producing an jonizing track freeze-in models

* If it decays outside the detector, time of flight measured using hits in muon chamber is large.

Fraction of charged hadrons depend on hadronization model: typically use a cloud hadronization model. (Mackperang, Rizza: hep-ph/0612161, Kraan, hep-ex/0404001

9

t- channel Simplified Models : HSCP searches

Use two CMS analysis for reinterpretation using cross-section upper limits

- CMS : Search for LLP in pp collisions : JHEP 07 (2013) 122 1.
- CMS : Search for heavy stable charged particles CMS-PAS-EXO-16-036 2.

Typicaly Tracker+TOF analysis is more constraining, requires HSCP decays outside the detector $\sigma_{\rm eff} = \sigma \times f_{\rm LLP}(L,\tau)$ Fraction of LLPs that decay inside the detector (tracker only) or outiside The detector (tracker +TOF): Computed using trigger and selection efficiencies (CMS: EPJC 75 (325))

t- channel Simplified Models : Combined limits

Perturbative Annihilations

t- channel Simplified Models : Combined limits

M. Becker, E. Copello, J. Harz K. Mohan, DS. JHEP08(2022) 145

t- channel Simplified Models : Future projection

t- channel Simplified Models : Future projection

. Becker, E. Copello, J. Harz K. Mohan, DS. JHEP08(2022) 145

t- channel Simplified Models : Current and future projections

t- channel Simplified Models : Current and future projections

M. Becker, E. Copello, J. Harz K. Mohan, DS. JHEP08(2022) 145

Alternative Mechanisms of Dark Matter Production

Tweaked from arXiv:0911.1120

Freeze-in: general idea

arXiv:hep-ph/0106249 arXiv:0911.1120 ar $i_1 : 17.607 + 2...$

Cosmological Probes of SuperWIMP Dark Matter

What if Neutralinos are not the Lightest SUSY particle, but next to lightest?

- In Supergravity inspired Supersymmetry scenarios, the gravitino can be the lightest particle, and very very weakly coupled to the neutralino, leading to a long lived neutralino (decaying to a gravitino + a Photon).
- The neutralino (a WIMP) can Freeze-out, and long afterwards decay to gravitino (**SuperWIMP**).
- Being extremely long lived it will escape the detector without a trace (No prompt searches).
- However it will leave definite signatures in Cosmology due to energy dump as photon.

The gravitino mass is a free parameter related to the SUSY breaking scale F Feng, Rajaraman, Takayama hep-ph/0306204

Cosmological Probes of SuperWIMP Dark Matter

What if Neutralinos are not the Lightest SUSY particle, but next to lightest?

- In Supergravity inspired Supersymmetry scenarios, the gravitino can be the lightest particle, and very very weakly coupled to the neutralino, leading to a long lived neutralino (decaying to a gravitino + a Photon).
- The neutralino (a WIMP) can Freeze-out, and long afterwards decay to gravitino (SuperWIMP).
- Being extremely long lived it will escape the detector without a trace (No prompt searches).
- However it will leave definite signatures in Cosmology due to energy dump as photon.

The gravitino mass is a free parameter related to the SUSY breaking scale F

$$m_{ ilde{G}} \simeq \langle F \rangle / m_{
m pl}$$
 Extremely long lived $L = c \tau \simeq 2.8$

Cosmological Probes of SuperWIMP Dark Matter

What if Neutralinos are not the Lightest SUSY particle, but next to lightest?

- In Supergravity inspired Supersymmetry scenarios, the gravitino can be the lightest particle, and very very weakly coupled to the neutralino, leading to a long lived neutralino (decaying to a gravitino + a Photon).
- The neutralino (a WIMP) can Freeze-out, and long afterwards decay to gravitino (**SuperWIMP**).
- Being extremely long lived it will escape the detector without a trace (No prompt searches).
- However it will leave definite signatures in Cosmology due to energy dump as photon.

The gravitino mass is a free parameter related to the SUSY breaking scale F Feng, Rajaraman, Takayama hep-ph/0306204

$$\boxed{m_{\tilde{G}} \simeq \langle F \rangle / m_{\rm pl}} \quad \text{Extremely long lived} \quad \left[L = c\tau \simeq 2.8 \times 10^{22} \left(\frac{\text{GeV}}{m_{\chi_1^0}} \right)^3 \frac{(1 - 2\epsilon_{SM})}{\epsilon_{SM}^3 (1 + 3(1 - 2\epsilon_{SM}))} m \right] \quad \epsilon_{\rm SM} \equiv \frac{E_{\gamma}}{m_{\chi_1^0}} = \frac{m_{\chi_1^0}^2}{2\pi \epsilon_{SM}^2} = \frac{1}{2\pi \epsilon_{S$$

1. Big Bang Nucleosynthesis: Injected photons/energy can photodissociate nuclei and change primordial element abundances

2. CMB Spectral Distortion: If the lifetime is about 10⁶-10¹³ s can distort the CMB blackbody energy spectrum

3. **CMB** Anisotropies: Temperature and polarization anistotropies due to changes in accoustic peaks of CMB angular spectra

4. Constraints from Lyman-alpha forest: A relativistic component of the SuperWIMP leads to a non-zero velocity dispersion, hence a large free streaming scale and suppression of small scale fluctuations

t- channel Simplified Models : Constraints on gravitino Superwimps

M. Deshpande, J. Hamman, DS, M. White, A.G Williams, YY Wong 2309.05709, EPJC XXX

t- channel Simplified Models : Constraints on axino Superwimps

t- channel Simplified Models : Recommendations and benchmarks

DARK MATTER VIA *t*-CHANNEL PRODUCTION COSMOLOGY SECTION

A PREPRINT

LHC Dark Matter Working Group

2	С	onte	nts	
3	1	Intro	oduction: Appearance of long-lived particles in <i>t</i> -channel models	2
4	2	Curr	ently performed searches	2
5	3	Cov	erage of current searches	3
6		3.1	Freeze-in/superWIMP regime	3
7		3.2	Conversion-driven freeze-out regime	4
8			3.2.1 Quarkphilic minimal model	4
9			3.2.2 Leptophilic minimal model	5
10			3.2.3 Non-minimal models	5
11		3.3	Occurrence of LLPs in canonical freeze-out	7
12	4	Gap	s in the current coverage	7

ed Particle	e Se	arches	s* - 95% CL	Exclus	ion			ATLA	S Preliminary
						ſ	$\hat{\mathcal{L}} dt = (\hat{z})$	32.8 – 139) fb ⁻¹	\sqrt{s} = 13 TeV
Signature ∫	L dt [fb	p ⁻¹]	Lifetime	limit					Reference
splaced vtx + muon	136	\tilde{t} lifetime				0.003-6.0 m		$m(ilde{t}){=}$ 1.4 TeV	2003.11956
splaced lepton pair	32.8	${ ilde \chi}_1^0$ lifetime			0.003-1.	<mark>0 m</mark>		$m(ilde{q}){=}$ 1.6 TeV, $m(ilde{\chi}_1^0){=}$ 1.3 TeV	1907.10037
displaced dimuon	32.9	${ ilde \chi}_1^0$ lifetime				0.02	<mark>9-18.0 m</mark>	$m(ilde{g}){=}$ 1.1 TeV, $m(ilde{\chi}_1^0){=}$ 1.0 TeV	1808.03057
-pointing or delayed γ	139	${ ilde \chi}_1^0$ lifetime				0.24-2.4 m		$m(\tilde{\chi}_1^0, \tilde{G})$ = 60, 20 GeV, $\mathcal{B}_{\mathcal{H}}$ = 2%	CERN-EP-2022-096
displaced lepton	139	$\widetilde{\ell}$ lifetime			6-750 mr	n		$m(ilde{\ell}){=}$ 600 GeV	2011.07812
displaced lepton	139	$ ilde{ au}$ lifetime			9-270 mm			$m(\widetilde{\ell}){=}200~{ m GeV}$	2011.07812
disappearing track	136	${\widetilde \chi}_1^{\pm}$ lifetime				0.06-3.06 m		$m(ilde{\chi}_1^{\pm}){=}$ 650 GeV	2201.02472
large pixel dE/dx	139	${\widetilde \chi}_1^{\pm}$ lifetime			0.3	-30.0 m		$m(ilde{\chi}_1^{\pm}){=}$ 600 GeV	2205.06013
2 MS vertices	36.1	S lifetime			0.1-519 m			$\mathcal{B}(\tilde{g} \rightarrow \tilde{S}g) = 0.1, \ m(\tilde{g}) = 500 \ \mathrm{GeV}$	1811.07370
large pixel dE/dx	139	ĝ lifetime				> 0.45 m		$m(ilde{g}){=}$ 1.8 TeV, $m(ilde{\chi}_1^0){=}$ 100 GeV	2205.06013
splaced vtx + $E_{\rm T}^{\rm miss}$	32.8	ĝ lifetime				0.03-1	13.2 m	$m(ilde{g}){=}$ 1.8 TeV, $m(ilde{\chi}_1^0){=}$ 100 GeV	1710.04901
ℓ , 2 – 6 jets + $E_{\rm T}^{\rm miss}$	36.1	ĝ lifetime			-	0.0-2.1 m		$m(ilde{g}){=}$ 1.8 TeV, $m(ilde{\chi}_1^0){=}$ 100 GeV	ATLAS-CONF-2018-003
2 MS vertices	139	s lifetime			0.3	1-72.4 m		<i>m</i> (<i>s</i>)= 35 GeV	2203.00587
w-EMF trackless jets	139	s lifetime				0.19-6.94 m		<i>m</i> (<i>s</i>)= 35 GeV	2203.01009
ℓ + 2 displ. vertices	139	s lifetime		4-85 mn	n			<i>m</i> (<i>s</i>)= 35 GeV	2107.06092
2 μ –jets	139	γ _d lifetime			0.654-939 r	nm		$m(\gamma_d) =$ 400 MeV	2206.12181
2 μ –jets	139	γ_{d} lifetime			2.7-534 mm			$m(\gamma_d) =$ 400 MeV	2206.12181
displaced dimuon	32.9	Z _d lifetime		0.009-24.0 m				$m(Z_d) = 40 \text{ GeV}$	1808.03057
+ low-EMF trackless je	et 36.1	Z _d lifetime				0.21-5.2 m		$m(Z_d) =$ 10 GeV	1811.02542
MF trk-less jets, MS vt	× 36.1	s lifetime				0.41-51.5 m		$\sigma imes \mathcal{B} =$ 1 pb, $m(s) =$ 50 GeV	1902.03094
MF trk-less jets, MS vt>	× 36.1	s lifetime		0.	04-21.5 m			$\sigma \times \mathcal{B} =$ 1 pb, $m(s) =$ 50 GeV	1902.03094
MF trk-less jets, MS vt>	× 36.1	s lifetime			0.06-52.4 m	-		$\sigma \times \mathcal{B}=$ 1 pb, $m(s)=$ 150 GeV	1902.03094
aced vtx ($\mu\mu$, μe , ee) + μ	ı 139	N lifetime	0.	74-42 mm				m(N) = 6 GeV, Dirac	2204.11988
aced vtx ($\mu\mu$, μe , ee) + μ	ı 139	N lifetime	3.1	-33 mm				m(N)= 6 GeV, Majorana	2204.11988
aced vtx ($\mu\mu$, μe , ee) + e	9 139	N lifetim <mark>e</mark>		0.49-81 mm				m(N) = 6 GeV, Dirac	2204.11988
aced vtx ($\mu\mu$, μe , ee) + e	9 139	N life <mark>time</mark>		0.39-51 mm				m(N)= 6 GeV, Majorana	2204.11988
	T -1/		0.001 0.0	1	0.1	1	10	¹⁰⁰ c τ [m]	
$\frac{13}{16} = 13$	ta							<u></u>	
ble lifetime limits is	s shown	¹ . 0.001	0.01	0.1	1	10		au [ns]	
l d ble	lata full da	lata full data e lifetime limits is showr	lata full data e lifetime limits is shown. 0.001	lata full data 1 1 lifetime limits is shown. 0.001 0.01	lata full data full data e lifetime limits is shown. 0.001 0.01 0.1	lata full data internet in the second	Intermediate Intermediate Intermediate Intermediate Intermediate Intermediate Intermediate 0.001 0.01 0.1 1 Intermediate 1 10	lata full data full data represented a second	$\frac{1}{1000} = \frac{1}{1000} = 1$

t- channel Simplified Models : Recommendations and benchmarks

Code 📀) Issues 17 Pull requests 🕟 Actions 🖽 Pro	jects 🔃 Security 🗠 Insights	
	දී main 👻 දී 7 Branches 🟷 0 Tags	Q Go to f	ile <> Code -
	andlessa Added emerging jets		9bf8363 · last month 🛛 🏷 274 Commits
	CalRatioDisplacedJet/ATLAS-EXOT-2019-23	Organizing folders	3 months ago
	Delphes_LLP	FIX in DelphesLLP	2 months ago
	DisappearingTracks	Mark Goodsell: Added CMS-EXO-19-0	10 3 years ago
	DisplacedVertices	Added missing file	last month
	EmergingJets/CMS-EXO-18-001	Added emerging jets	last month
	HSCPs	Fix in plot label	last month
	🗅 .gitignore	Added gitignore	4 years ago
	README.md	Added emerging jets	last month
			E
	LLP Recasting Reposition This repository holds example codes for recorepository maintainers are not responsible for applying it to new models.	tory asting long-lived particle (LLP) search or how the code is used and the user s	es. The code authors and should use discretion when
	Adding your recasting code		
	This is an open repository and if you have de include it here. Please contact <u>llp-recasting</u>	eveloped a code for recasting a LLP ar <u>@googlegroups.com</u> and we will provid	nalysis, we encourage you to de you with the necessary

Repository Structure

The repository folder structure is organized according to the type of LLP signature and the corresponding analysis and authors:

- Displaced Vertices
 - 13 TeV ATLAS Displaced Jets
 - 13 TeV ATLAS Displaced Vertex plus MET by ALessa
 - 13 TeV ATLAS Displaced Vertex plus MET by GCottin
 - 8 TeV ATLAS Displaced Vertex plus jets by GCottin
- CalRatio Displaced Jets
 - 13 TeV ATLAS Displaced Jets in the calorimeter
- Emerging Jets
- Heavy Stable Charged Particles
- 13 TeV ATLAS HSCP 139/fb
- 13 TeV ATLAS HSCP 31.6/fb
- 8 TeV CMS HSCP
- Disappearing Tracks

A README file can be found inside each folder with the required dependencies and basic instructions on how to run the recasting codes.

Running the Recasting Code

Andre Lessa's Github repo

Q

- We need more recast codes implemented, for which
- We need help and resources from our experimental colleagues

《影 Simplified models provide a robust pathway to analyze theoretical and experimental Constraints that map to constraints on full-models.

- 貒 t-channel DM models provide a rich phenomenology, with complementary constraints from a variety of signatures
- 貒 LLP searches form a crucial component in closing the gap between freeze-out and nonthermal mechanisms of dark matter in t-channel.
- 《《 Needed: Experiment-theory collaborations, more recast/reinterpretation codes

International Joint Workshop on the Standard Model and Beyond 2024 & 3rd Gordon Godfrey Workshop on Astroparticle Physics

Conclusions

Q

