Exploring the Sensitivity of ANUBIS

Paul Swallow (He/Him) On behalf of the ANUBIS Collaboration

University of Cambridge

3rd July 2024

LLP 2024: Fourteenth workshop of the Long-Lived Particle Community

The ANUBIS Detector

- A transverse LLP detector [1,2] at IP1.
- Aim to extend and compliment off-axis searches.
- \blacksquare Instrument ATLAS cavern ceiling, \sim 20 m from IP, with RPCs.
 - $\hfill\square$ Relatively easy access and maintenance.
 - $\hfill\square$ Large solid angle \rightarrow Great sensitivity.
 - □ Explores LLP phase space $c\tau > 10^2$ m for $m_{LLP} > 1$ GeV.
- An official sub-project of ATLAS.
 - □ Can use ATLAS itself as an active veto.
 - $\hfill \label{eq:analytical}$ Trigger ATLAS with ANUBIS \rightarrow obtain information on LLP production.
- Currently have \$\mathcal{O}\$(10) Institutes involved.
- Currently have a small-scale prototype detector (proANUBIS) in the cavern taking data.

proANUBIS Detector

- Small(er)-scale detector prototype.
- Consists of 6 BIS78 RPCs (1 × 2 m²), in 3 chambers separated by 60 cm.
 - Bottom-to-Top: Triplet-Singlet-Doublet
 - □ Similar technology to ANUBIS design.
- March 2023: Initially installed.
- See [1]: commissioning & initial analysis.
- Main Goals:
 - Background Studies.
 - Assists sensitivity studies.
 - Detector Performance.

[1]: LLP2024 Commissioning Talk Exploring the Sensitivity of ANUBIS

The SET-ANUBIS framework

UNIVERSITY OF

Goal: Create a flexible framework to handle a variety of LLP models to determine ANUBIS' sensitivity.

$$N_{LLP} = \mathcal{L}_{\text{HL-LHC}} \cdot \sigma_{HNL} \cdot \mathcal{B}(HNL) \cdot \frac{N_{obs}}{N_{gen}}$$

 $N_{LLP} \approx 4$ (0 BG) $N_{LLP} \approx 90$ (Conservative data-driven BG estimate based on [2])

- Based on the work of T. Satterthwaite et al [1], $H \rightarrow SS$ model.
- Methodology:
 - □ Simulate LLP model (MADGRAPH, PYTHIA *etc.*).
 - □ Apply Selection: detector acceptance, background removal *e.g.* isolation requirements.
 - □ Calculate sensitivity: Number of LLP candidates (*N*_{*LLP*}) required to exceed BG expectations significantly.
- Planned Models:
 - □ HNLs, Dark Photon, Dark Scalar etc.
 - $\hfill\square$ As outlined in PBC proposal [3].

Exploring HNLs at ANUBIS: Motivation

- \blacksquare HNLs/RH neutrinos predicted in many models relating to small ν mass.
 - □ e.g. Type-I Seesaw [2,3].
 □ HNLs mix with SM neutrinos: weak couplings/large mass HNL → LLP.
- HNLs part of the 11 benchmarks suggested by PBC in 2019.
- Excellent target for LLP searches:
 - □ Well-defined theoretical framework.
 - □ Strong physics motivation.

CAMBRIDGE

$$\mathcal{L}_{\mathsf{HNL}} = rac{1}{2} \overline{\mathcal{N}}_i \not \! D \mathcal{N}^i - rac{m_{Ni}}{2} \overline{\mathcal{N}}_i^c \mathcal{N}^i - \mathcal{C}_{ij} \overline{\mathcal{L}}^j \widetilde{\phi} \mathcal{N}^i + h.c$$

"Heavy neutral leptons (HNL)... is one of the simplest extensions of the SM accounting for neutrino masses and mixings, baryogenesis and potentially also dark matter. **BC6**, **BC7** and **BC8** correspond to a HNL interacting exclusively

with the e, μ and τ neutrinos, respectively."

Exploring HNLs at ANUBIS: Production CAMBRIDGE

- Two generic production modes: Hard Interaction Bosons (W,Z,H) and Mesonic (B,D).
 - Dominant production of Mesons @ LHC.
 - $\hfill\square$ Light LLPs \rightarrow more mesons in forward direction.
 - $\hfill\square$ Mesonic decays can have associated jet production \to More likely to be removed with isolation requirements.

UNIVERSITY OF

- $\hfill\square$ Boost from Hard Interaction Boson (HIB) production \gg than mesonic.
- Best expected sensitivity: boosted, high mass HNL produced by W/Z/H.

Exploring HNLs at ANUBIS: Decays

Decay mode of heavy neutrino $N_4 \rightarrow \nu_{\ell_1} \nu_{\ell_2} \overline{\nu_{\ell_2}}$ $N_4 \rightarrow \nu_\ell e^- e^+$ $N_4 \rightarrow e^- \mu^+ \nu_m + c.c$ $N_4 \rightarrow \mu^- e^+ \nu_c + c.c$ $N_4 \rightarrow \nu_\ell \pi^0$ $N_4 \rightarrow e^-\pi^+ + c.c$ $N_4 \rightarrow \nu_\ell \mu^- \mu^+$ $N_4 \rightarrow \mu^- \pi^+ + c.c$ $N_4 \rightarrow e^- K^+ + c.c$ $N_A \rightarrow \nu_\ell \eta$ $N_4 \rightarrow \mu^- K^+ + c.c$ $N_4 \rightarrow \nu_\ell \rho^0$ $N_4 \rightarrow e^- \rho^+ + c.c$ $N_4 \rightarrow \nu_\ell \omega$ $N_4 \rightarrow \mu^- \rho^+ + c.c$ $N_4 \rightarrow e^- K^{*+} + c.c$ $N_4 \rightarrow \nu_\ell K^{*0}$ $N_4 \rightarrow \nu_\ell \overline{K}^{*0}$ $N_4 \rightarrow \nu_\ell \eta'$ $N_4 \rightarrow \mu^- K^{*+} + c.c$ $N_A \rightarrow \nu_\ell \phi$ $N_4 \rightarrow e^- \tau^+ \nu_{\pi} + c.c$ $N_4 \rightarrow \tau^- e^+ \nu_e + c.c$ $N_A \rightarrow e^- D^+ + c.c$

- Assumed a **minimal**, majorana HNL model (type I seesaw).
- Only introducing **one** HNL (PBC model BC6):
 - \Box Currently only couple HNLs to ν_e 's.
- ANUBIS should see any charged final state:

$$\Box$$
 $N \rightarrow e^{\pm}qq'; N \rightarrow \nu_e qq'; N \rightarrow e^+ e^- \nu_e$

- \Box But **not** $N \rightarrow \nu_e \nu \overline{\nu}$
- For m_{HNL} > m_π decays into mesons possible.
- More mesons are kinematically accessible for larger masses [1].

Simulating HNLs

- Use MATHEMATICA to derive decay widths [1,2].
- SET uses (for HNLs):
 - □ MADGRAPH: **HIB** production
 - □ PYTHIA: Meson production & HNL decays.
- Produce N_{gen} events in 12 combinations of:
 - Production modes (CCDY, NCDY, ggF, Wγ).
 - □ Decay modes
 - $(e^{\pm}qq', \nu_e qq', e^+e^-\nu_e).$
- For 11 HNL masses \in [0.5, 1.5] GeV.
 - $\hfill\square$ Later: Expand to \in [0.01, 10] GeV.
- Then apply low-level selections.
 - $\hfill\square$ Representing BG removal.

Exploring HNLs at ANUBIS: Selection

Expected Backgrounds [1]:

- Neutral SM LLPs: e.g.n/K decaying/scattering in cavern.
- 'Punch-through' jets/muons that escape the ATLAS detector.
- **Cosmics**: reduced by rock shielding (\sim 8 Hz).

NIVERSITY OF

CAMBRIDGE

[4]: CDS 2839063

[5]: ANUBIS workshop 2023

Exploring HNLs at ANUBIS: Selection

Expected Backgrounds [1]:

- Neutral SM LLPs: e.g.n/K decaying/scattering in cavern.
- **'Punch-through' jets/muons** that escape the ATLAS detector.
- **Cosmics**: reduced by rock shielding (~ 8 Hz).

Background Removal:

- Reduce most BGs by using ATLAS as an active veto and selections.
- ANUBIS geometric acceptance requirement.
- ATLAS isolation requirements (*e.g.* [2,3]) should eliminate collision BGs:
 - $\Box E_{\mathrm{T}}^{\mathrm{miss}} > 30 \text{ GeV}; \Delta R(\mathsf{LLP},\mathsf{jets}) > 0.5; \Delta R(\mathsf{LLP},\mathsf{charged}) > 0.5$
 - $\hfill\square$ Isolation requirements effective at removing hadronic collision BGs.
 - □ Some discussion on older selection in [4].

Results

- Preliminary sensitivity limits:
 - □ (Top) Inclusive of decay mode (*e.g.* $e^{\pm}qq'$).
 - (Bottom) In each of the 12 combinations of production and decay.
- Also able to recast into:
 - $\square \mathcal{B} \text{ vs } c\tau.$
 - $\Box |U_{eN}|^2$ vs mass.
 - □ (See future paper.)
- The latter allows direct comparison to previous estimates [1-5].

Paul Swallow (Cambridge, He/Him)

Exploring the Sensitivity of ANUBIS

[4]:

2008.07539

[5]: 1909.1302

Future plans

- Finalise studies for HNLs:
 - □ Extend the mass range.
 - □ Include meson production.
 - □ Paper planned for the end of summer.
- Expand the framework to include additional models:
 - □ e.g. Dark Photon, Dark Scalar, Axions etc.
 - $\hfill\square$ Framework is modular \rightarrow easy to add models.
 - Feel free to recommend models!
- Develop more detailed background estimation.
 - Developing GeoModel of (pro)ANUBIS: incorporated into ATLAS geometry.
 - proANUBIS data analysis direct measurements of potential BGs.

PBC model BC5.

Summary

- Lots of work ongoing within ANUBIS.
 - $\hfill\square$ Data-taking with proANUBIS and initial analysis.
 - □ Studies of the expected backgrounds.
 - $\hfill\square$ Hardware R&D for the full detector.
 - Ongoing sensitivity studies.
 - Welcoming new collaborators!
- Developing a flexible, modular framework to handle a variety of models: SET-ANUBIS.
- Initial focus on HNLs.
 - $\hfill\square$ Preliminary limits achieved with maximum sensitivity $\mathcal{B}(HNL)\sim\mathcal{O}(10^{-9})$ around 1 GeV.
- Plan to expand existing study (more masses, couplings, meson production *etc.*).
 Associated paper planned for later in summer.
- Then extend work into additional LLP models.

SET-

ANUBIS

Backup

Transverse Detectors

Transverse detector

Complicated backgrounds and trigger in high-energy & intensity main detectors limit LHC coverage for light LLPs

Type of detector: transverse vs forward

· ANUBIS is transverse to beamline

- Can reach heavier / more strongly interacting LLPs
- Focus on scenarios where unstable "portal particles" link to a hidden sector: HNLs, scalar portal, vector portal, axion
- Lifetimes...
 - > 10^8 seconds less constrained by LHC experiments
 - < ~ minutes less constrained by BBN

MATHUSLA and CODEX-b

- · Other new transverse LHC LLP detectors
- MATHUSLA at CMS, CODEX-b at LHCb

From LHCP talk by A. Mullin.

HNL Physics expectations at ANUBIS

From LHCP talk by A. Mullin.

UNIVERSITY OF

Additional detail on Selections

Selections

Event-level geometry + isolation cuts updated to improve signal efficiency

· Jets must not intersect the ceiling within a nearby radius of the LLP

Definitions:

Charged particle:

- Final state (Nchildren=0)
- · Charged only (Q!=0)
- · Prompt (production_vertex.position~0)
- · Energetic enough (pT>minChargedPt)

DeltaR(LLP,charged) > 0.5

Jet:

- Final state
- Any charge
- Prompt
- Not LLPs
- Not produced by LLPs (anywhere in decay chain)

DeltaR(LLP, jets)>0.5

Particles contributing to MET:

- Final state
- · Any charge
- Prompt
- Not LLPs
- Not produced by LLPs (anywhere in decay chain)

Event's MET > 30 GeV

LHCP talk by A. Mullin.

Sensitivity Estimates

LHCP talk by A. Mullin.

Previous Sensitivity Study: $H \rightarrow SS$

- Work from Cambridge Masters Student: Toby Satterthwaite [1].
- Focusing on *H*→ *SS*, with *S* being a scalar LLP of mass 10-40 GeV.
- Methodology:
 - □ Generate events with MADGRAPH for 4 LLP masses 10–40 GeV with ggF and VBF.
 - \square **Boost** these events with a certain $c\tau$ value.
 - □ Apply **loose selection**: Acceptance in ANUBIS volume; $E_T^{\text{miss}} > 30 \text{ GeV}$; $\Delta R(\text{LLP,jet}) > 0.5$; $\Delta R(\text{LLP,charged}) > 0.5$.
 - Determine the number of observed LLP events for each LLP mass and a range of cτ values:

 $N_{LLP} = \mathcal{L}_{HLLHC} \cdot \sigma_H \cdot 2 \cdot \mathcal{B}(H \rightarrow SS) \cdot (N_{obs}/N_{gen})$

CDS 2839063

UNIVERSITY OF

CAMBRIDGE

Previous Sensitivity Study: $H \rightarrow SS$ UNIVERSITY OF CAMBRIDGE Plots [1]

- Ceiling & shaft configurations here are compared.
- Ceiling preferred and has become the nominal design.

[1]: CDS 2839063

Paul Swallow (Cambridge, He/Him)

Exploring the Sensitivity of ANUBIS