

Rencent results of new physics searches at BESIII

Yu Zhang for the BESIII Collaboration yuzhang@usc.edu.cn

Outline

- Introduction
- •BESIII experiment
- Search for muonphilic vector/scalar
- Search for axion-like particles
- Search for dark photons
- Study of symmetry violation
- •Summary and outlook

Dark matter interacting with SM

- Amounts 27% of the total matter density of the universe
- Not interact with strong and electromagnetic interactions
- Explain the features of astrophysical observations

$$\mathcal{L} \supset \begin{cases} -\frac{\varepsilon}{2\cos\theta_W} B_{\mu\nu}F'^{\mu\nu}, & \text{vector portal} \\ (\mu\phi + \lambda\phi^2)H^{\dagger}H, & \text{Higgs portal} \\ y_nLHN, & \text{neutrino portal} \\ \frac{a}{f_a}F_{\mu\nu}\tilde{F}^{\mu\nu}, & \text{axion portal} \end{cases} \begin{array}{l} A' \text{ kinetic mixing with } \gamma, \mathsf{Z} \\ Dark \text{ Higgs (mixes with SM Higgs)} \\ Sterile \text{ neutrino} \\ Axion, \text{ coupling to DM} \end{array}$$

- Dark matter has not seen yet in particle physics experiments
- One of the simplest models is "DM hidden sector" that allows the coupling between DM and SM particles via the so called "portals"
- "Portal" interactions are accessible by high intensity e+ecollider experiments, such as BESIII experiment, if their masses are a few GeV

Normal matter

5%

68%

Dark Energy

27%

BESIII experiment

Beijing Electron–Positron Collider II

Beijing Spectrometer III

A symmetric e^+e^- collider running at tau-charm (2-5 GeV) region

BESIII collaboration

BESIII data sets

- World's largest data samples in tau-charm region
- 10 billion J/ ψ , 2.7 billion ψ (3686) and 20 fb⁻¹ ψ (3770) on threshold

Charmonium
XYZs
Charm physics
Light hadron
Tau physics
New physics

Search for new physics at BESIII

• Exotic particles

- Muonphilic vector/scalars
- Invisible processes
- Dark matter portals

• (Very) Rare decays

- Charmonium weak decays
 - JHEP 01 (2024) 126
- Charm FCNC
 - arxiv:2404.05973 (accepted by PRL)

- Symmetry violation
 - BNV/LNV processes
 - PRL 131 (2023) 121801
 - PRD 108 (2023) 012006
 - arXiv:2308.05490
 - cLFV processes
 - SCPMA 66 (2023) 221011

Exotic particles search at BESIII

Axion-like particles (ALP)

With $\psi(2S)$ data set •PLB 838 (2023) 137698 With J/ψ data set •arXiv: 2404.04640

Invisible decays

Dark matter portals Dark photon ISR process Light CP-odd higgs boson •PLB 774 (2017) 252 (visible) •PLB 839 (2023) 137785 (invisible) Visible decay With J/ψ data set PRD 105 (2022) 012008 •PRD 99 (2019) 012013

- PRD 93 (2016) 052005
- PRD 85 (2012) 092012

Invisible decay

Invisible muon philic scalar/vector meson • PRD 101 (2020) 112005

•PRD 109 (2024) L031102

 $\Sigma^+ \rightarrow$ proton+invisible

•PLB 852 (2024) 138614

Λ baryon

•PRD 105 (2022) L071102

 ω/ϕ mesons

•PRD 98 (2018) 032001

 η/η' mesons

•PRD 87 (2013) 012009

Heavy Majorana neutrino

•PRD 99 (2019) 112002

•PRD 106 (2022) 072008

•PRD 99 (2019) 012006

Massless dark photon

•PRD 102 (2020) 052005

Muonphilic scalar/vector $X_{0/1}$

- Proposed as a explanation to the $(g-2)_{\mu}$ anomaly
- A minimal extention of U(1) group is added to the SM
- $U(1)_{L_{\mu}-L_{\tau}}$ model:

a massive scalar X_0 or vector X_1 boson couples only with the 2nd and 3rd generation leptons $\mathcal{L}_{\mu}^{\text{scalar}} = -g_0 X_0 \overline{\mu} \mu$, $\mathcal{L}_{\mu}^{\text{vector}} = -g_1 X_1 \overline{\mu} \gamma \mu$

• Can be studied with $J/\psi \rightarrow \mu^+ \mu^- X_{0/1}$

JHEP 10 (2020) 207

Three model scenarios

Invisible $L_{\mu} - L_{\tau}$ model

Dark matter particle χ couples to X_1 with strength $g_D^{'}$ $m_{\chi} < m_{X_1}/2$ $g_D^{'} \gg g_1^{'}$

 $BF(X_1 \rightarrow \chi \overline{\chi}) \sim 100\%$

Scalar U(1) model $\begin{array}{c}g_D' & & \chi\\ X_0 & & & \\ & & & \\ X_0 & & & \\ & & & \\ X_0 & & & \\ & &$

Dark matter particle χ couples to X_0 with strength $g_D^{'}$ X_0 is long lived or only decays to invisible final states

Search for $J/\psi \rightarrow \mu^+ \mu^- X_{0/1}$

Search for $X_{0/1}$ in the mass region 1 MeV - 1 GeV

No evidence for the signals of $X_{0/1}$ invisible decay

Maximum local significance is 2.5σ at $0.72 \text{ GeV}/c^2$

Upper limits on the couplings

PRD (2024) 109, L031102

"vanilla" $L_{\mu} - L_{\tau}$ model

"invisible" $L_{\mu} - L_{\tau}$ model

"scalar" U(1) model

BESIII, BelleII, NA64-e: $X_1 \rightarrow \nu \nu$ BABAR, CMS, Belle: $X_1 \rightarrow \mu^+ \mu^-$ BESIII provides best sensitivity in 200-860 MeV/c^2

BESIII perform the first direct search for the scalar

Search for $\Sigma^+ \rightarrow$ **proton+invisible**

• Multiple new physics effects can enter the signal decay

- FCNC process $s \rightarrow d\nu\nu$
- Massless dark photon, QCD axion...
- 10 million pairs of $\Sigma^+\overline{\Sigma}^-$ are produced
 - (10 billion J/ ψ decays)

• Enables studies of decays with "missing" particles by tagging one $\varSigma \to p\pi$

Search for $\Sigma^+ \rightarrow$ **proton+invisible**

- Count the energy deposit in electro-magnetic calorimeter
- A unique method at electron-positron colliders

- Anti-protons are more likely to interact with detector materials, causing the energy deposit larger than proton
- Requires data-driven method to model the background

Search for $\Sigma^+ \rightarrow$ **proton+invisible**

- First upper limit of the decay branching fraction is reported ($< 3.2 \times 10^{-5}$ at 90% CL.)
- Complementes other searches for the QCD axion with tiny mass (<1 eV) and long lifetime (PLB 169 (1986) 73), also constraints massless dark photon models

Search for an axion-like particle

- An axion-like particle (ALP)
 - is a pseudo-scalar particle
 - introduced by the spontaneous breaking of Peccei-Quinn symmetry to solve the strong CP problem of the QCD
 Phys. Rev. Lett. 40, 223 (1978); Phys. Rev. Lett. 40, 279 (1978)
 Phys. Rev. Lett. 38, 1440 (1977); Phys. Rev. D 16, 1791 (1977)
 - predicted by many models beyond the SM and proposed to be a cold DM candidate
 - couples to a pair of photons with ALP-photon coupling $g_{a\gamma\gamma}$
 - experimental bounds on $g_{a\gamma\gamma}$ with m_a range of MeV/ c^2 GeV/ c^2 , mainly constrained by e^+e^- colliders

JHEP 06 (2019) 091

Phys. Lett. B 753, 482 (2016)

Search for ALP with ψ (2S) data

• Using 2.7 billion $\psi(2S)$ data, BESIII has set one of the best limits on $g_{a\gamma\gamma}$ via $J/\psi \rightarrow \gamma a(\rightarrow \gamma \gamma)$

a

 Can avoid the pollution of non-resonant production and QED background

 e^+

 $\psi(2S)$

Search for ALP with ψ (2S) data

- Limits at $10^{-6} 10^{-8}/\text{GeV}$ level
- Most stringent constraints on $g_{a\gamma\gamma}$ in the m_a rangle [0.165, 1.468] GeV/ c^2 up-to-date
- Can be further improved with 10 billion of BESIII J/ ψ data, which can include both radiative J/ $\psi \rightarrow \gamma a$ and ALP-strahlung process $e^+e^- \rightarrow \gamma a$

Expected pollution of ALP-strahlung process $e^+e^- \rightarrow \gamma a$ in $J/\psi \rightarrow \gamma a$

Search for ALP with J/ ψ data $_{J/\psi}$

 Huge but flat QED background (estimated with continuum data), found to have minimal effect on signal

mar gayy

Search for ALP with J/ ψ data

 $\begin{array}{c} 40 \\ (a) \\$

• Background of ALP-Strahlung process is estimated with $\sigma_a^{rad} = \frac{N_{J/\psi}}{L_{J/\psi}} \mathscr{B}(J/\psi \to \gamma a)$ and taken as a systematic uncertainty of 4.4%

• Uncertainty associated with the fit model is estimated by varying the paraterized PDFs of signal and background, which is 9.2%

•At a given mass point $m_a = 2.786 \text{ GeV}/c^2$, the global significance is 1.6sigma \rightarrow no significant signal has been found

Search for ALP with J/ ψ data

These results supersedes the previous BESIII (Belle-II) search by 3 (5) times Phys. Lett. B 838, 137678 (2023); Phys. Rev. Lett. 125, 161806 (2020)

95% Confidence level ULs on ALPphoton coupling

Search for massive dark photon

- Extra gauge group $U(1)_D$
 - The associated gauge boson is the dark photon
 - Massive if the symmetry is spontaneously broken
- Dark photon has a kinetic mixing with the SM photon $\frac{1}{2} \varepsilon F'_{\mu\nu} F^{\mu\nu}$
- Effective coupling strength with SM matter $\mathrm{e}\varepsilon$
- Can be produced in any process by replacing the SM photon

Search for massive dark photon in $e^+e^- \rightarrow \gamma \gamma'$

- γ' predominantly decays to $\chi \overline{\chi}$ if $m_{\chi} < m_{\gamma'}/2$
- Search for a peak in the SM γ energy spectrum $E_{\gamma} = \frac{s m_{\gamma'}^2}{2\sqrt{s}}$
- 14.9 fb⁻¹ data samples between \sqrt{s} =4.13-4.60 GeV
- Scan of $m_{\gamma'}$ in [1.5, 2.9] GeV
- \bullet Maximum global significance is 2.2σ

Constraint on mixing parameter ε

$$\sigma(e^+e^- \to \gamma\gamma') = \frac{2\pi\alpha^2}{s}\epsilon^2 \left(1 - \frac{m_{\gamma'}^2}{s}\right) \times \left(\left(1 + \frac{2\frac{m_{\gamma'}^2}{s}}{\left(1 - \frac{m_{\gamma'}^2}{s}\right)^2}\right) \log \frac{(1 + \cos\theta_c)^2}{(1 + \cos\theta_c)^2} - 2\cos\theta_c\right)$$
PRD 80 (2009) 015003
 $\cos\theta_c$ is the cut on γ polar angle

BESIII will produce more competitive constraints with 20 $\rm fb^{-1}$ data at 3.773 GeV

Search for $\Delta(B - L)$ =2 process

• First search, BF upper limits of K^+e^-/K^-e^+ are 3.6/1.9 × 10⁻⁶

Search for LNV process

Decay diagram in the scenario of Majorana neutrino

Search for cLFV process $J/\psi \rightarrow e\mu$

Summary and outlook

- BESIII has a good potential to search for BSM physics with a clean collision enviroment, is especially ideal for decays with neutral and "missing" particles
- The searches performed so far have significantly constrained the allowed phase space of theoretical models
 - Muonphilic particles, ALPs, cLFV
- More results will come soon by analysing the 10 billion J/ ψ , 2.7 billion $\psi(3686)$ and 20 fb⁻¹ $\psi(3770)$ decays; new round of data taking is also underway

Thanks!