The 14th workshop of Long lived Particle Community 2024 | University of Tokyo

Searches for LLP at Belle and Belle II

Ori Fogel, Tel Aviv University

on behalf of the Belle and Belle II collaborations

01 July 2024

Contents

• Search for a heavy neutral lepton that mixes predominantly with the τ neutrino at Belle (PRD 109, L111102, Arxiv 2402.02580)

• Search for a long-lived spin-0 mediator in $b \rightarrow s$ transitions at the Belle II (PRD 108, L111104, Arxiv 2306.02830)

Belle experiment

- The detector was located in KEKB e^+e^- accelerator in Tsukuba, Japan (1999-2010); ongoing analysis effort.
- Center of mass energy $\sqrt{s} = 10.58 \text{ GeV}$
- B-factory:

•
$$\sigma(e^+e^- \rightarrow b\bar{b}) \cong 1.05 \, nb$$

- But can be used to other studies:
 - $\sigma(e^+e^- \rightarrow \tau^+\tau^-) \cong 0.9 \ nb$
 - $\sigma(e^+e^- \to c\bar{c}) \cong 1.3 \ nb$
- Collected data of $\sim 1ab^{-1}$.

Belle II experiment

- An upgrade of Belle.
- Located in SuperKEKB (KEKB upgrade).
- Regular data-taking since April 2019.
- Will collect much more data than Belle:

Contents

Search for a heavy neutral lepton that mixes predominantly with the τ neutrino at Belle (PRD 109, L111102, Arxiv 2402.02580)

Search for a long-lived spin-0 mediator in $b \rightarrow s$ transitions at the Belle II (PRD 108, L111104, Arxiv 2306.02830)

5

Heavy Neutral Lepton (HNL, N)

• Neutrino flavour oscillations \Rightarrow the neutrinos have masses $m_{i=1,2,3}$.

Phys. Rev. Lett. 81

- m_i is small \Rightarrow seesaw mechanism with heavy neutral lepton.
- The HNL N mixes with SM neutrino ν_{ℓ} via $V_{\ell N}$ parameter.

- A model of 3 generations of HNLs can account for:
 - Baryon asymmetry of the universe (through Leptogenesis)
 - Dark matter (keV scale)

N

Phys.Lett,B 631(2005) 151-156

We search HNL that mixes predominantly with tau neutrino.

• HNL mass (m_N) range restriction:

•
$$m_N < m_{\tau} - m_{\pi} = 1.63 \text{ GeV}$$

•
$$c\tau_N \approx 0.324 \ cm \times \left(\frac{m_N}{1 \ GeV}\right)^{-5.44} |V_{\tau N}|^{-2}$$
 Phys Rev D 29,2539

> HNL is a long-lived particle (in our parameter space).

 $> \mu^+ \mu^-$ form a displaced vertex (DV).

doi:10.1007/JHEP11(2018)032

Data Samples

- Belle Data samples are collected from two main resonance states of e^+e^- collisions:
 - > $\Upsilon(4S)$ with $\mathcal{L} \approx 790 \, fb^{-1}$ > $\Upsilon(5S)$ with $\mathcal{L} \approx 100 \, fb^{-1}$

 $N_{\tau\tau} = (836 \pm 12) \times 10^6$

MC – Signal Samples

- Generating $\tau_{sig}^- \to \pi^- N (\to \mu^+ \mu^- \nu_\tau)$ signal samples.
- Mass range m_N : 300 1600 MeV with 25 MeV gap.
- Lifetime $c\tau_0$: 10-30 cm, to yield a reasonably large number of events in the fiducial volume of the analysis.

MC – General Background Samples

Most dominant background processes: $e^+e^- \rightarrow \tau^+\tau^-$ and $e^+e^- \rightarrow q\bar{q}$.

- Using $e^+e^- \rightarrow \tau_{sig}^- \tau_{tag}^+$.
- Signal side:

•
$$\tau_{sig}^- \rightarrow N(\rightarrow \mu^+\mu^-\nu_\tau)\pi^-$$

Tag side: 1-prong decay

$$\bullet \quad \tau_{tag}^{+} \to \begin{cases} \pi^{+} \nu_{\tau} \\ \pi^{+} \pi^{0} \nu_{\tau} \\ l^{+} \nu_{\tau} \overline{\nu_{l}} \end{cases}$$

- Selecting only 4-tracks samples.
- DV transverse distance from IP > 15 cm.

DV = Displaced Vertex

IP = Interaction Point

• Background:

•
$$\tau^- \to K_S^0 (\to \pi^+ \pi^-) \pi^- \nu_{\tau}$$

•
$$\tau^- \to K_L^0 \left(\to \pi^{\mp} \mu^{\pm} \right) \pi^- \nu_{\tau}$$

- Material interaction
- $\tau^- \to \pi^- \pi^- \pi^+ \nu_{\tau}$ with misreconstructed prompt pions
- Define a control region (CR):

•
$$\tau^- \to DV \left(\to \mu^{\pm} \pi^{\mp} \right) \pi^-$$

•
$$\tau^- \to DV(\to \mu^+\mu^+)\pi^-$$

•
$$\tau^- \to DV (\to \pi^+\pi^-)\pi^- (K_S \text{ exclusion})$$

•
$$\tau^- \to DV (\to \pi^+\pi^-)\pi^-$$
 (K_S selection)

Used with the fit in the SR to determine the background expectation.

Used for the background systematic uncertainty.

K_S^0 rejection and definition of 2 signal regions

- $K_S^0 \to \pi^+\pi^-$ (with pions misidentified as muons) produces a DV similarly to the HNL.
- We identify K_S^0 with $m_{\pi\pi}^{DV}=$ DV mass reconstructed with the π mass hypothesis for the two DV daughters.
- Low mass HNLs distribute differently from high mass HNLs.
- Hence, we divide the signal region into 2 regions:
 - SRH: $m_{\pi\pi}^{DV} > 0.52 \text{ GeV}$
 - SRL: $m_{\pi\pi}^{DV} < 0.42 \text{ GeV}$

HNL mass reconstruction

- Despite the unobservable neutrino, we can reconstruct the decay chain kinematics completely, up to 2-fold ambiguity.
 - > 12 unknowns: p_{ν}^{μ} , p_{N}^{μ} , p_{τ}^{μ}
 - > 12 constraints:
 - * p^{μ} conservation in the τ and N decays (8)
 - * Known masses of τ and ν_{τ} (2)
 - * Unit vector from the production point of the π system to that of the DV system, which is the direction of $\overrightarrow{p_N}$ (2)

Quadratic equation

(Using the square root argument *S* for a cut)

Two HNL mass solutions : m_+ , m_-

if $S < 0 \Rightarrow S = 0$

- In SRL, a cut for high m_+, m_- exclusion is applied.
- In SRH and SRL, we observe 1 and 0 signal events respectively.

Region	$N_{ m obs}$	$N_{ m bgd}$	$\frac{N_{ m obs}}{N_{ m bgd}}$	$N_{ m obs,bgd}^{\sigma}$	Postfit
SRH	1	0.40 ± 0.28		2.1	0.59 ± 0.31
SRL	0	0.80 ± 0.40	0	-2.0	0.69 ± 0.45
CRH	95	73.6 ± 3.8	1.29	2.0	93 ± 8
CRL	43	37.2 ± 2.7	1.16	0.8	41 ± 6
$VRH\pi\pi$	273	191 ± 6	1.43	4.7	
$VRL\pi\pi$	165	127 ± 6	1.30	2.7	
VRK_S	7917	7728 ± 39	1.02	2.0	
VRHss	0	0.40 ± 0.28	0		
VRLss	0	0	0		

Systematic uncertainties

• Background yield expectation: we take the relative systematic uncertainty to be the largest percentage change in the background model needed to bring the data and MC to 1σ agreement in the VRs:

$$\sigma(N_{bgd}) = \left(\frac{N_{data} - N_{MC}}{\sqrt{\sigma_{data}^2 + \sigma_{MC}^2}} - 1\right) \frac{\sqrt{\sigma_{data}^2 + \sigma_{MC}^2}}{N_{MC}} \approx 34\%$$

• More:

Uncertainty type	Value
N branching fraction	5%
Luminosity	1.4%
reconstruction of the two prompt tracks	0.7%

• All uncertainties handled with the nuisance parameters using CLs prescription.

- We use the model predictions and the efficiency to determine the numbers of expected signal events in the two signal regions.
- We plot the 95% CL exclusion of the experiment.
- BABAR uses a missing-energy method that has much higher efficiency but depends on understanding of the $\tau \to 3\pi v_{\tau}$ background.
- Very tight limits are obtained from reinterpretation of other searches at the previous CHARM and WA66 experiments.

Contents

 Search for a heavy neutral lepton that mixes predominantly with the τ neutrino at Belle (PRD 109, L111102, Arxiv 2402.02580)

 Search for a long-lived spin-0 mediator in b → s transitions at the Belle II (PRD 108, L111104, Arxiv 2306.02830)

Spin-0 mediator

• BSM models that suggest an additional *S* scalar particle:

Phys. Lett. B 662, 53 (2008)

• **Dark Scalar:** Gives mass to DM and mixes with the SM Higgs boson through mixing angle θ .

J. Phys. G 47, 010501 (2020), Phys. Rev. D 75, 037701 (2007)

• Axionlike particle (ALP): with a predominant coupling f_a to fermions.

J. Phys. G 47, 010501 (2020), JHEP 03, 171 (2015)

• We also search model independent limits.

• We search S in the following B-meson decays (and their charged conjugation):

Where:

•
$$x^+x^- = e^+e^-, \mu^+\mu^-, \pi^+\pi^-, K^+K^-$$

•
$$K^{*0} = K^*(892)^0$$
 (short-lived)

• Both decays mediated by flavor-changing neutral current $b \rightarrow s$

Data Samples

• Belle II $\Upsilon(4S)$ resonance with $\mathcal{L} \approx 189 \ fb^{-1}$ which corresponds to $N_{B\bar{B}} = (198 \pm 3) \times 10^6$.

MC – Signal Samples

- Generating $B^+ \to K^+S(\to x^+x^-)$ and $B^0 \to K^*(\to K^+\pi^-)S(\to x^+x^-)$ signal samples.
- Mass range m_N : 0.025 4.78 GeV with 90 steps with varying sizes.
- Lifetime $c\tau$: 0.001 400 cm with variable steps

MC – General Background Samples

- From most dominant to least:
 - $e^+e^- \rightarrow c\bar{c}$
 - $e^+e^- \rightarrow u\bar{u}/d\bar{d}/s\bar{s}$
 - $e^+e^- \rightarrow B\bar{B}$
 - $e^+e^- \rightarrow \tau^+\tau^-$

B^0 signal $B^0 \to K^*(892)^0 (\to K^+\pi^-) S(\to x^+x^-)$

DV = Displaced Vertex

IP = Interaction Point

Belle II CDC radius: r = 16 - 113 cm

Selection Criteria

- **Long lived particles**: DV transverse distance from IP > 0.05 cm
- Suppressing $e^+e^- \rightarrow q\overline{q}(\gamma), e^+e^- \rightarrow \tau^+\tau^-(\gamma)$ background:

 Energy differences: $|\Delta E| = \left|E_B^* \sqrt{s}/2\right| < \begin{cases} 0.05 \text{ GeV}, \ x \neq \pi \\ 0.035 \text{ GeV}, \ x = \pi \end{cases}$
 - Beam-constrained mass $M_{BC} = \sqrt{\frac{s}{4}} |p_B^*|^2 > 5.2 \text{ GeV/c}^2$
- Suppressing K_S^0 for $x = \pi$:
 - $0.498 < M(\pi^+\pi^-) < 0.507 \text{ GeV}/c^2$

Signal yields extraction

Modified mass is defined: $M'(x^+x^-) = \sqrt{M^2(x^+x^-) - 4m_x^2}$

• We fit for a narrow nonnegative-yield signal peak, at various values of *S* mass and assuming various lifetimes, over a smooth background.

Systematic uncertainties

Uncertainty type	Value	
Difference in track finding efficiency for displaced tracks between data and MC: depending linearly on DV position	0 — 45%	
Signal efficiency	4% ($\sim 10\%$ for lightest $m_{\scriptscriptstyle S}$)	
Combination of $B\overline{B}$ yield and $b \to s$ ratio	2.9% (for larger $m_{\scriptscriptstyle S}$)	
Identification efficiency of K^{*0}	3%	

• All uncertainties handled with the nuisance parameters using ${\it CL}$ s prescription.

Independent model:

- Using the signal yields and $N_{B\bar{B}}$, we obtain the products of the \mathcal{BR} s of the B mesons and S decays.
- We plot the 95% CL exclusion for different life-times.

These limits are:

- First for exclusive hadronic final states.
- Most constraining from a direct search for $K^*e^+e^-$ final states.

Dark scalar model

ALP model

Dark scalar model

ALP model

Summary

- No observation of significant excess of events consistent with a signal processes.
- Search for a heavy neutral lepton that mixes predominantly with the τ neutrino at Belle
 - For the first time, utilizes the DV originating from the decay of a long-lived HNL produced in an identified tau decay.
 - Ability to reconstruct the HNL candidate mass and suppress background to the singleevent level.
- Search for a long-lived spin-0 mediator in $b \rightarrow s$ transitions at the Belle II
 - First for exclusive hadronic final states of the signal processes.
 - Most constraining from a direct search for $K^*e^+e^-$ final states.
 - Sensitivities from Belle II and LHCb in the region up to \sim 4 GeV are comparable.
 - Belle II is collecting more data: hopefully improved results in the future!

Thank You!

Backup

Equations of HNL reconstruction

TOTAL INTEGRATED LUMINOSITY FOR GOOD RUNS in run 1

- Total integrated luminosity: 424 fb-1
- Total integrated luminosity at the Y(4S) resonance: 363 fb-1
- Total integrated luminosity below Y(4S) resonance: 42 fb-1
- Total integrated luminosity above Y(4S) resonance: 19 fb-1

Belle II status

$$(B^2 - 1)p_N^2 + (2AB - D)p_N + A^2 - C = 0.$$
 (1)

$$A = (m_{\tau}^{2} + m_{\mu\mu}^{2} - m_{\pi}^{2})/2E,$$

$$B = (q_{\mu\mu} + q_{\pi})/E,$$

$$C = (E_{\mu\mu}(m_{\tau}^{2} - m_{\pi}^{2}) - E_{\pi}m_{\mu\mu}^{2})/E,$$

$$D = 2(E_{\mu\mu}q_{\pi} - E_{\pi}q_{\mu\mu})/E,$$
(2)

$$m_N^2 = (D + Cp_N)/E^2.$$
 (3)