

MilliQan

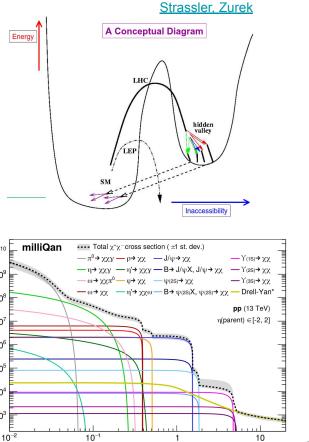
Sai Neha Santpur (University of California, Santa Barbara) On behalf of the milliQan collaboration

S. Santpur (ssantpur@ucsb.edu)

LLP 2024 - 02 July 2024

LHC and millicharged particles

- LHC can provide access to hidden sector particles
- Hidden sector provides rich phenomenology including stable dark matter candidates


Consider dark sector containing U(1) abelian gauge field, A', interacting with SM hypercharge B through kinetic mixing

$$\begin{aligned} \mathcal{L} &= \mathcal{L}_{\rm SM} - \frac{1}{4} A'_{\mu\nu} A'^{\mu\nu} \\ &+ i \bar{\psi} \left(\partial \!\!\!/ + i e' A' - i \kappa e' B \!\!\!/ + i M_{\rm mCP} \right) \psi \end{aligned}$$

Results in a Dirac fermion with mass $M_{_{mCP}}$ and electric charge $\kappa e^{\prime}cos\theta_{_W}$

small ⇒ milli-charged particles (mCPs)

S. Santpur (ssantpur@ucsb.edu)

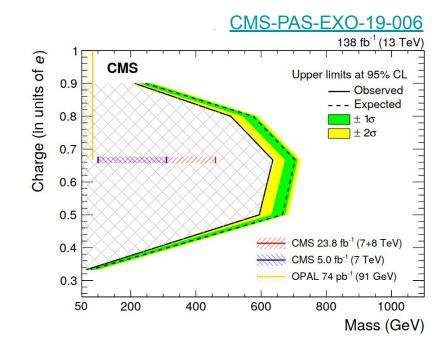
 $5 \times B / (\text{Q/e})^2 [\text{pb]}$

b 10

10⁶

10⁵

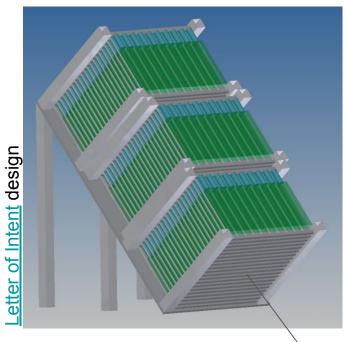
10⁴



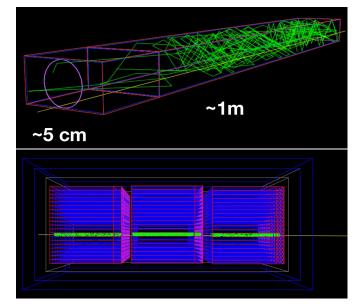
m, [GeV] 2

Can ATLAS/CMS see mCPs charge?

- mCPs with mass>100 MeV lose energy through ionization and/or excitation
- Very small energy deposits in CMS for Q<0.3e, difficult to distinguish from noise
- The best limits are placed at ~0.67e



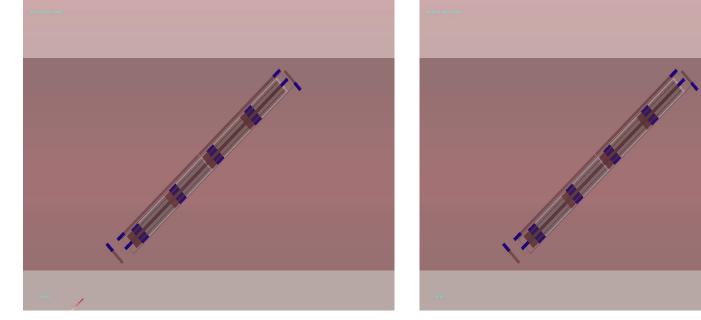
Dedicated mCP detector needed at the LHC!!



MilliQan detector: working principle

- Principle: Use scintillators to detect mCPs using their low ionization energy
- Through going mCPs can be detected using co-incident signal deposited in multiple layers of bars
- Main background: PMT dark rate, muons and cosmic showers

Bar is made of one scintillator and a PMT and is capable to detect single photons (sPE)


S. Santpur (ssantpur@ucsb.edu)

CMS Interaction Point

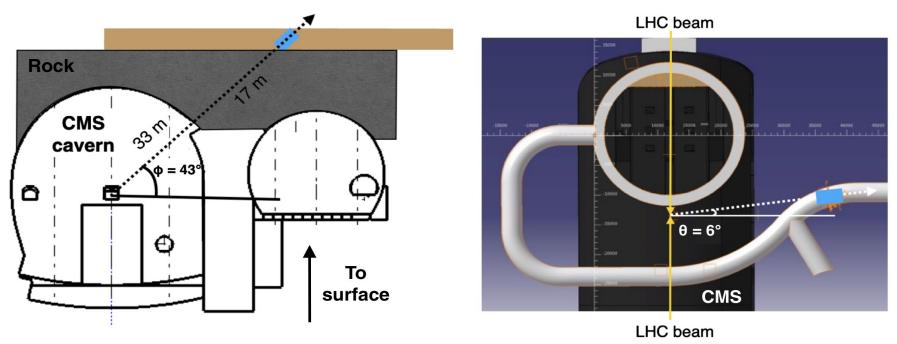
mCP vs through going muon

• Vetoing on large, saturating pulses helps us cut down muon background

Q = e

Legend: μ , γ , mCP, e^{-} , optical photon

Q = 0.01e

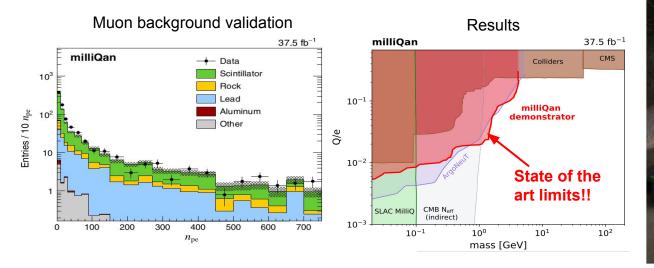


S. Santpur (ssantpur@ucsb.edu)

6

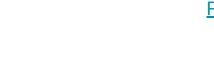
Location

- MilliQan is housed in the unused drainage gallery of the CMS experiment
- 33m away from CMS IP at ϕ =43° and η =0.1 in CMS coordinate system
- Beam particles are shielded by the 17m rock
- Muon flux from cosmics is 100 times smaller than the surface



MilliQan demonstrator - Run 2

- Additional components like panels and hodoscope help reduce backgrounds like through-going muons, cosmic showers, neutrons etc
- Successful run in 2018 with 35 fb⁻¹, 2000h of data taking
- Provided proof of concept and competitive limits



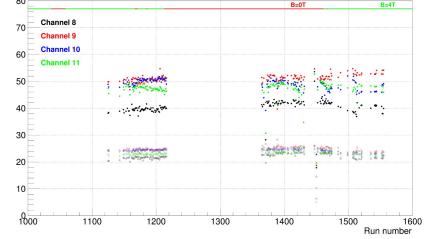
Phys.Rev.D102,032002

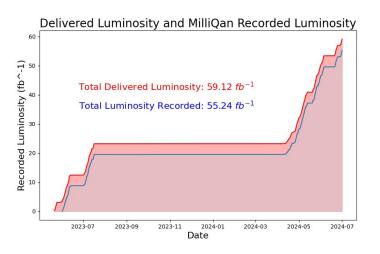
MilliQan Run 3 bar detector

- Four layers of 5x5x60 cm³ scintillator bars provides better background rejection
- Each layer contains 4x4 scintillator bars increasing the signal acceptance
- 8 panels with increased thickness provide background rejection
- Improved single photo electron reconstruction
- Improved calibration and monitoring using LEDs

Construction complete and stable data taking since **1st June 2023!**

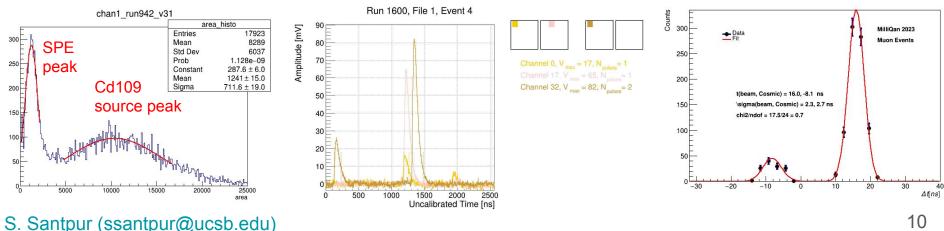
Phys. Rev. D 104 (2021) 032002



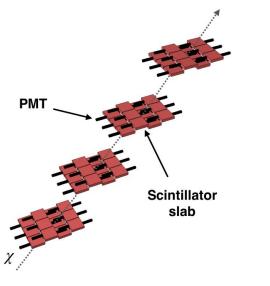

MilliQan Run 3 bar detector status

- >55 fb-1 data recorded in 2023 + 2024 (so far)
- Trigger rate is stable at 2 Hz
 - Includes 3 hits in a line signal trigger Ο (unprescaled), dedicated background triggers to study cosmics, beam muons
- Operations: Shift system in place to ensure smooth operations and swift interventions if needed

Pulse height vs run number for Channels 8, 9, 10, and 11

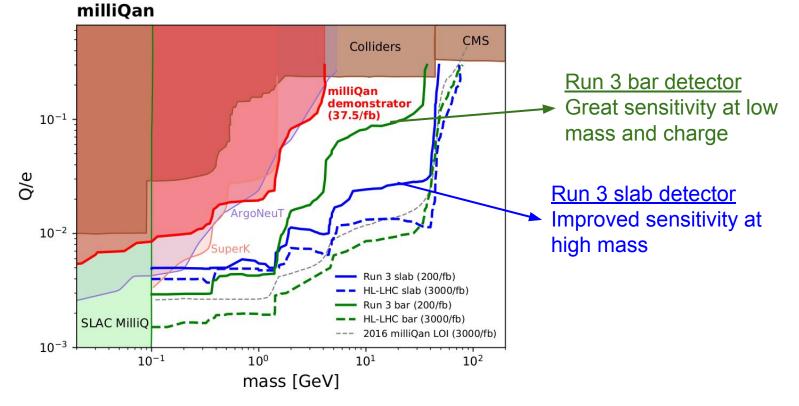


Validation validation validation!


- Cd109 source calibrations performed to calibrate all accessible channels
- Event displays help identify any issues like light leaks, after pulses, electronic noise, etc
- Trigger validation and efficiency studies helped optimize our trigger!
 - We have >99% trigger efficiency for signal! 0
- Beam muons and cosmics are used to perform timing calibrations and studies
- Analysis efforts ramping up with Run 3 data... stay tuned!

MilliQan Run 3 slab detector

- Improved sensitivity for mCPs with masses above 1.4 GeV due to increased acceptance
- Four layers of 3x4 array of 40x60x5 cm³ slabs
- Each slab has four PMTs to increase the efficiency
- Detector under construction right now!
 - Expected to complete by the end of summer!



Sensitivity projections

 Combination of the bar and the slab detectors provides the best sensitivity for masses above 100 MeV

Summary and outlook

- *MilliQan provides a highly sensitive model-independent probe for mCPs*
- Run 3 bar detector has been stably collecting data
 - >55 fb-1 data recorded as of today
 - Data monitoring, quality checks, trigger studies underway continuously
 - Timing and sPE calibrations in place
 - Beam muons control region being studied and comparisons to simulation are underway
- Run 3 slab detector is under construction right now
 - Nearly 25% of the detector built
 - Expected to finish construction by end of summer
- Stay tuned for physics results in the near future!

SubMET and FORMOSA use same principle to search for mCPs and offer complimentary sensitivity

milliQan collaboration

milliQan tour in LLP2023!

