Quantum sensing for ultra low thresholds

Daniel Carney

Hello! Thanks for having me.

Bad news:

- I'm not a particle physicist
- I'm a theorist who is going to talk like an experimentalist

Good news:

- I'm friendly
- I only have ~20 slides

PTOLEMY versus quantum mechanics

Weinberg 1962 Cheipesh, Cheianov, Boyarsky 2021

Tritium is bound in a potential generated by the graphene. The ground state wavefunction has:

 $\Delta x \sim 1$ angstrom $\rightarrow \Delta p > 1$ keV

by **Heisenberg uncertainty**. But this produces a final-state uncertainty ΔE_e > 1 eV.

 \rightarrow no way to resolve the \sim 100 meV shift from **neutrino mass.**

PTOLEMY Collaboration 2022

Outline

- Quantum mechanics imposes fundamental sources of noise.
- Quantum noise will continue to be important in variety of contexts, high energy and otherwise, **HOWEVER**
- **● These noise sources can often be engineered away.**

Review:

"Quantum measurements in fundamental physics: a user's manual"

Jacob Beckey $(JILA + LBL \rightarrow UIUC)$

Quantum-limited detection of motion

The Sensitivity of the Advanced LIGO Detectors at the Beginning of Gravitational Wave Astronomy **LIGO Collaboration** 1604.00439

VOLUME 23, NUMBER 8

15 APRIL 1981

Quantum-mechanical noise in an interferometer

Carlton M. Caves

W. K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125 (Received 15 August 1980)

Standard quantum limit

Quantum-limited impulse sensing

$$
\Delta p_{SQL} = \sqrt{\hbar m_s \omega}
$$

Meaning: can observe impulses at scale of **detector quantum vacuum fluctuations**

Quantum-limited impulse sensing

Trapped electrons, ions

$$
\Delta p_{SQL} = \sqrt{\hbar m_s \omega}
$$

 \sim 10 meV \rightarrow \land F \sim 0.1 neV

 $(m = m e, \omega/2\pi = 100$ kHz)

Nanomechanical objects

 \sim 10 keV \rightarrow \land F \sim 0.01 neV

 $(m = 1$ fg, $\omega/2\pi = 10$ kHz)

Macroscopic objects (>microgram scale)

 \sim 1 GeV \rightarrow Δ E \sim 0.001 neV

 $(m = 1 mg, \omega/2\pi = 1 kHz)$

Mechanical sensing targets

The first experiment

Search for new Interactions in a Microsphere Precision Levitation Experiment (SIMPLE) @ Dave Moore group, Yale

2020:

0.1-10 ng dielectric spheres ($R \sim \mu$ m)

Optically levitated, stability \sim days

 \sim 75 MeV momentum transfer resolution (\sim 100 x SQL)

The first experiment

Monteiro, Afek, Carney, Krnjaic, Wang, Moore **PRL** 2020

Lin, Yu, Zurek 1111.0293 Krnjaic, Sigurdson 1406.1171

The lowest threshold detectors possible

Microwave/RF trapped ions, electrons

Fundamental limit: lightest possible detectors

 $\Delta p \sim 10 \text{ meV} \rightarrow \Delta E \sim 0.1 \text{ meV}$ $(m = m \text{ e}, \omega/2\pi = 100 \text{ kHz})$

Possible applications: millicharged DM, calorimeters

$$
\sigma_{\rm eff} \approx 4~\mu\text{m}^2 \times \frac{q_\chi^2}{v^2} \times \left(\frac{100~\text{kHz}}{\omega/2\pi}\right)
$$

Carney, Haffner, Moore, Taylor **PRL** 2021 Pic from Haffner group @ UC Berkeley: Xu et al 2310.00595

The lowest threshold detectors possible

Carney, Haffner, Moore, Taylor **PRL** 2021 Budker, Graham, Ramani, Schmidt-Kaler, Smorra **PRX Quantum** 2021 Osada, Taniguchi, Shigefuji, Noguchi **Phys Rev Res** 2022

Quantum Invisible Particle Sensor (QuIPS)

Measure:

- Sphere recoil (optical $@$ ~SQL, Yale)
- Escaped β electron (pixelated CCD/CMOS, Berkeley)

 \rightarrow Infer "invisible" (e.g., neutrino) momentum

~1% mass-loaded with radioisotope of choice (can also do electron capture)

Carney, Leach, Moore **PRX Quantum** 2023

Heavy sterile neutrinos

With a single 100nm sphere at the standard quantum limit (SQL):

$$
\Delta p_{\rm SQL} = \sqrt{\hbar m_s \omega_s} = 15 \, {\rm keV} \times \! \left(\frac{m_s}{1~\text{fg}}\right)^{1/2} \left(\frac{\omega_s/2\pi}{100~\text{kHz}}\right)^{1/2}
$$

Clear target: search for sterile neutrinos in keV-MeV range

 \sim 10⁵ radioisotopes (\sim 1 month with 37 Ar) \rightarrow beat existing lab bounds

Carney, Leach, Moore **PRX Quantum** 2023

This actually works

Now building pixel calorimeter + 100 nm-scale trap at Berkeley (QuIPS project, LDRD funded)

Mechanical detection of nuclear decays Wang, Penny, Recoaro, Siegel, Tseng, Moore 2402.13257

Searches for new electroweak symmetries

Giacomo Morocco Dan Kodroff (LBL postdocs)

$$
\frac{d\Gamma}{d\cos\theta e\nu} = \xi (1 + a_{\beta\nu}\cos\theta_{e\nu})
$$
\nAngle between
\nemitted electron
\nand neutrino
\n
$$
= 1/3
$$
 exactly in
\nstandard model

Non-SM physics (e.g., tensor currents in weak sector) affects this 1/3 value

 \sim 1 sphere lifetime \rightarrow constrain more precisely than any existing experiment

Scalable: sensor arrays

Relatively straightforward to trap, read out up to ~1000 beads with single laser

Same technique used to create Rydberg atom quantum computers (Harvard/QEra)

A brief meditation on the word "possible"

Quantum mechanics and measurement

So far I have talked about detection at the "Standard Quantum Limit" (SQL), where the detector's vacuum fluctuations dominate the measurement uncertainty

But one might want to go even further – is it possible?

Quantum mechanics itself does not impose any limit to how precisely one can measure a system.

Detection beyond the Standard Quantum Limit

Squeezed light injection

Frequency-dependent squeezing

10% strain reduction \rightarrow 1000% increase in visible mergers

From Evan Hall (MIT/LIGO)

Vacuum: given mode of light has $\Delta X = \Delta Y = \frac{1}{2}$ Squeezed light: can have $\Delta X > \frac{1}{2}$, $\Delta Y < \frac{1}{2}$

Neutrino mass measurement?

Holy grail: measure the light neutrino masses ($m \sim 100$ meV). With trapped beads?

Key requirement: prepare and read out sphere center-of-mass $\Delta p \sim 100$ meV $\rightarrow \Delta x \sim 1$ um

Requires ~10dB squeezing. Possible? Will also require many (~1000) spheres, to get rare endpoint events.

C. Regal S. Bhave N. Matsumoto S. Bhave

J. Beckey

H. Haffner T. LeBrun

J. Taylor

S. Ghosh P. Stamp

G. Afek

H. Muller

T.-C. Lee

(EXO)

th

G. Semenoff

D. Moore P. Shawhan R. Lang (LIGO) B. Knepper (EXO) (LIGO) (XENON) (BeEST) (XENON)

Thanks to many people

(XENON)

K. Leach (BeEST)

J. Qin

G. Krnjaic A. Hook Y. Zhao

V. Domcke N. Rodd

Outlook

- Quantum mechanics imposes fundamental sources of noise.
- Quantum noise will continue to be important in variety of contexts, high energy and otherwise, **HOWEVER**
- **● These noise sources can often be engineered away.**
- How far can we go? Are there more fundamental limits from quantum field theory, gravity, …?