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Hello! Thanks for having me.

Bad news:
● I’m not a particle physicist
● I’m a theorist who is going to talk like an 

experimentalist

Good news: 
● I’m friendly
● I only have ~20 slides



graphene substrate

tritium 3H

PTOLEMY versus quantum mechanics

3He+

e-
cosmic 𝝂

e- calorimeter

Weinberg 1962
Cheipesh, Cheianov, Boyarsky 2021



Tritium is bound in a potential generated by the 
graphene. The ground state wavefunction has:

Δx ~ 1 angstrom → Δp > 1 keV 

by Heisenberg uncertainty. But this produces a 
final-state uncertainty ΔEe > 1 eV.

→ no way to resolve the ~100 meV shift from 
neutrino mass. 

graphene substrate

tritium 3H

PTOLEMY Collaboration 2022
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Outline

● Quantum mechanics imposes fundamental sources of noise.

● Quantum noise will continue to be important in variety of 
contexts, high energy and otherwise, HOWEVER

● These noise sources can often be engineered away.

Review:

“Quantum measurements in fundamental 
physics: a user’s manual” 

2311.07270 Giacomo Marocco
(LBL postdoc)

Jacob Beckey
(JILA + LBL → UIUC)



Quantum-limited detection of motion

The Sensitivity of the Advanced LIGO Detectors at the Beginning of Gravitational Wave Astronomy
LIGO Collaboration 1604.00439



𝛙 = exp(-x2/Δx2)

ΔxΔp = ℏ/2
minimal uncertainty

Δx
Measure x

Δx decreases

Δp increases

Time t passes

optimize → “standard quantum limit”

LIGO: m ~ 40 kg, t ~ (100 Hz)-1 → Δx ~ 10-19 m



Standard quantum limit

Sensor m = 1 mg, frequency = 1 Hz, dil fridge

SQL = point where shot + 
backaction are equal

Laser phase fluctuations

Random radiation pressure 
from laser



Quantum-limited impulse sensing

Δp

F = Δp δ(t-t0)

Meaning: can observe impulses at scale of 
detector quantum vacuum fluctuations



Trapped electrons, ions

Nanomechanical objects

Macroscopic objects 
(>microgram scale)

~ 10 meV → ΔE ~ 0.1 neV

 (m = m_e, ⍵/2𝝅 = 100 kHz)

~ 10 keV → ΔE ~ 0.01 neV

 (m = 1 fg, ⍵/2𝝅 = 10 kHz)

~ 1 GeV → ΔE ~ 0.001 neV

 (m = 1 mg, ⍵/2𝝅 = 1 kHz)

Quantum-limited impulse sensing



target mass scale 
(in units of GeV/c2 = 1 proton)
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Mechanical sensing targets



The first experiment

2020: 

0.1-10 ng dielectric spheres (R ~ μm) 

Optically levitated, stability ~ days

~ 75 MeV momentum transfer resolution (~ 
100 x SQL)

Search for new Interactions in a Microsphere 
Precision Levitation Experiment (SIMPLE) @ 
Dave Moore group, Yale



v ~ 200 km/s

Nn = # neutrons

The first experiment

sensor

DM 2 μm 

Lin, Yu, Zurek 1111.0293
Krnjaic, Sigurdson 1406.1171

Xenon5th force

Monteiro, Afek, Carney, Krnjaic, 
Wang, Moore PRL 2020



The lowest threshold detectors possible

Microwave/RF trapped ions, electrons

Fundamental limit: lightest possible detectors

Δp ~ 10 meV → ΔE ~ 0.1 neV
(m = m_e, ⍵/2𝝅 = 100 kHz)

Possible applications: millicharged DM, calorimeters

Carney, Haffner, Moore, Taylor PRL 2021
Pic from Haffner group @ UC Berkeley: Xu et al 2310.00595



The lowest threshold detectors possible

Carney, Haffner, Moore, Taylor PRL 2021
Budker, Graham, Ramani, Schmidt-Kaler, Smorra PRX Quantum 2021
Osada, Taniguchi, Shigefuji, Noguchi Phys Rev Res 2022



Quantum Invisible Particle Sensor (QuIPS)

Carney, Leach, Moore PRX Quantum 2023

~100 nm silica sphere

~1% mass-loaded with 
radioisotope of choice
(can also do electron capture)

Measure: 
● Sphere recoil (optical @ ~SQL, Yale)
● Escaped β electron (pixelated CCD/CMOS, Berkeley)

→ Infer “invisible” (e.g., neutrino) momentum

laser 
in

2 cm

psph *

p𝛽

p𝞶



Heavy sterile neutrinos

With a single 100nm sphere at the 
standard quantum limit (SQL):

Clear target: search for sterile neutrinos in 
keV-MeV range

~105 radioisotopes (~1 month with 37Ar)
→ beat existing lab bounds 

Carney, Leach, Moore PRX Quantum 2023



um-scale particle trapped at Yale
Measurement of individual alpha-decay events

Now building pixel calorimeter + 100 nm-scale trap at 
Berkeley (QuIPS project, LDRD funded) 

Mechanical detection of nuclear decays
Wang, Penny, Recoaro, Siegel, Tseng, Moore 
2402.13257

This actually works



Searches for new electroweak symmetries

Non-SM physics (e.g., tensor currents in 
weak sector) affects this 1/3 value

~1 sphere lifetime → constrain more 
precisely than any existing experiment

107 decays 66Ni

Giacomo Morocco
Dan Kodroff
(LBL postdocs)

Angle between 
emitted electron 
and neutrino

= 1/3 exactly in 
standard model 



Scalable: sensor arrays

laser in

AOD

Relatively straightforward to trap, read out 
up to ~1000 beads with single laser

Same technique used to create Rydberg 
atom quantum computers (Harvard/QEra) 

1000 spheres x 1 year, SQL



A brief meditation on the word “possible”



Quantum mechanics and measurement

So far I have talked about detection at the “Standard Quantum Limit” (SQL), 
where the detector’s vacuum fluctuations dominate the measurement 
uncertainty

But one might want to go even further – is it possible?

Quantum mechanics itself does not impose any limit to how precisely 
one can measure a system. 



Detection beyond the Standard Quantum Limit

From Evan Hall
(MIT/LIGO)

Squeezed light injection

Frequency-dependent squeezing

10% strain reduction → 1000% 
increase in visible mergers

Vacuum: given mode of light has ΔX = ΔY = ½
Squeezed light: can have ΔX > ½, ΔY < ½



Holy grail: measure the light neutrino masses (m ~ 100 meV). With trapped beads?

Key requirement: prepare and read out sphere center-of-mass Δp ~ 100 meV → Δx ~ 1 um

T

Δx ~ 1 um

Requires ~10dB squeezing. Possible? Will also require many 
(~1000) spheres, to get rare endpoint events.

d ~ 100 nm

Carney, Leach, Moore PRX Quantum 2023

Neutrino mass measurement?
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Outlook

● Quantum mechanics imposes fundamental sources of noise.

● Quantum noise will continue to be important in variety of contexts, high 
energy and otherwise, HOWEVER

● These noise sources can often be engineered away.

● How far can we go? Are there more fundamental limits from quantum field 
theory, gravity, …?


