

Displaced lepton jets in ATLAS Run-2 & comments on Run-3

Richards González on behalf of the ATLAS Collaboration

LLP 2024 workshop University of Tokyo, 1-5 July 2024

Why lepton jets?

- Exotic signatures arise in models with a dark sector composed of unstable particles with MeV-GeV masses decaying to SM particles
- Light dark sectors as general possibility in colliders (minimal extensions, DM candidates, exotic signatures)
- At the LHC, light dark particles are produced with large boosts, causing their decay products to form jet-like structures

• Today:

- Searches for **displaced LJ-like signatures** in Run-2 data
- Different **Higgs production modes:**
 - ggF+WH production (2022)
 - <u>VBF production</u> (2023)
- A few comments on Run-3

Lepton jet (LJ) = cluster of collimated light charged particles $(e^+e^-, \mu^+\mu^-, qq')$

Search overview

- $H \rightarrow 2\gamma_d (+X)$ via **Higgs & vector** portals
- SM final states $(\gamma_d \rightarrow \ell^+ \ell'/qq)$
- Additional E_T^{miss} signature in FRVZ benchmark decay
- Small coupling $\boldsymbol{\varepsilon}$: long-lived γ_d $\circ 10^{-7} < \boldsymbol{\varepsilon} < 10^{-5}$
- With $m_{\gamma d} << m_{H}$: collimated decay $\circ m_{\gamma d} \sim O(10 \text{ MeV}) - O(10 \text{ GeV})$
- Two searches using full Run-2 dataset:
 - ggF+WH search (pub. 2022)
 - VBF search & full combination (pub. 2023)

Displaced LJ signatures

NN-based taggers for DPJ quality

Cosmic-ray tagger (µDPJ)

- Based on track parameters and RPC timing information
- Per-track tagging classifying **cosmic background against tracks originated by collision products**

QCD tagger (cDPJ)

- 3D representations of jet energy built with calo-clusters
- Using energy deposit, *Φ* and *η* in each calorimeter sampling
- CNN trained to classify QCD MJ from signal-like jets

ATLAS Simulation

ACD multi-jet MC

0.2 0.3 0.4 0.5 0.6

FRVZ (m,, m,)=(125, 0.4) GeV

----- FRVZ (m., m.)=(800, 0.4) GeV

--- HAHM (m., m.)=(125, 0.4) GeV

0.7 0.8

0.9

QCD Tagger Score

BIB tagger (cDPJ)

- Using same information than QCD tagger
- CNN trained to classify
 Beam-Induced Background jets
 from signal-like jets

Trigger strategy

•	Lower DPJ multiplicity
	requirement for higher signal
	eff.

		ggF			WH			VBF	
# of DPJs		≥2				≥1			
Channel	2 µ	2c	c+µ	1c	2c	с+µ	µDРЈ	caloDPJ low E _T ^{miss}	caloDPJ high E _T ^{miss}
Trigger	Narr	row Sca CalRat	an/3 µ / io	/ Single lepton		NS/3 µ / E _T ^{miss}	Ε _τ	miss	

Data-driven background estimation: ABCD method

• Estimate expected QCD multi-jet background in each SR

- Non-collisional backgrounds (CR, BIB) are suppressed before populating ABCD planes
- Validations performed in BC & DC subplanes
 + additional validation regions (backup)

Estimation using ABCD

- Define plane using two uncorrelated variables
- Split plane in A, B, C & D regions:

• A = Signal-enriched

- B,C,D = Background-enriched
- Estimate N_A as: $N_A = \frac{N_B \times N_D}{N_C}$

• e.g., ABCD planes for VBF low E_T^{miss} channel:

Unblinded results: anything new?

- Before unblinding:
 - Estimate expected exclusion limits on observable of interest $BR(H \rightarrow 2\gamma_d + X)$
- After unblinding:
 - No new physics found!
 - All predictions in good agreement with observations
 - Estimate observed exclusion limits on observable of interest $BR(H \rightarrow 2\gamma_d + X)$

ggF & WH

Selection	Search channel	CRB	CRC	CRD	SR expected	SR observed
	2μ	55	61	389	317 ± 47	269
ggF	$c+\mu$	169	471	301	108 ± 13	110
	2c	97	1113	12146	1055 ± 82	1045
	С	1850	3011	155	93 ± 12	103
WH	$c+\mu$	30	49	31	19 ± 8	20
	2c	79	155	27	14 ± 5	15

Upper limits on BR(H→2γ_d+X): e.g., VBF

 $2\gamma_d + X$

↑

Upper limit on $B(H - 10^{-1})^{-1}$

10-4

10-1

ATLAS

VBF µDPJ

95% CL limits

10⁰

 $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$

FRVZ Model, mH = 125 GeV

10¹

10²

μDPJ

 $B(H \rightarrow 2\gamma_d + X) = 10\%$

····· m_{Yd} = 0.017 GeV

--- m_{va} = 0.1 GeV

- my = 0.4 GeV

 $m_{y_{2}} = 10 \, \text{GeV}$

10⁴

 $c\tau_{V_d}$ [mm]

-- my = 2 GeV

10³

Single ABCD limits for each channel and mass point

VBF combination

 $B(H \rightarrow 2\gamma_d + X) = 10\%$

..... m_{Vd} = 0.017 GeV

myd = 10 GeV

10⁴

 $c\tau_{V_d}$ [mm]

10⁵

--- m_{Va} = 0.1 GeV

- m_{Va} = 0.4 GeV

 $--m_{V_{d}} = 2 \text{ GeV}$

10³

10 $2\gamma_d + X$

î

Upper limit on $B(H = 10^{-1} \text{ Jm})^{-1}$

10-

10-1

ATLAS

VBF combination

95% CL limits

10⁰

 $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$

FRVZ Model, m_H = 125 GeV

10¹

10²

- Observed upper limits on $BR(H \rightarrow 2\gamma_d + X)$ for each SR and overall VBF combination
- Limits available for ggF & WH allow for full combination!

Limits on single *ct* are extrapolated via lifetime reweighting to other cr values (backup)

caloDPJ

Combined limits on BR(H \rightarrow 2 γ_d +X): ggF+WH+VBF

- Limits on $BR(H \rightarrow 2\gamma_d + X)$ combining all ggF/WH/VBF SRs per γ_d mass point
- Combination of observed limits obtained for $m_{vd} \in [0.017, 15]$ GeV

- Higher sensitivity obtained from ggF channels
- VBF offers competitive sensitivity at low and high $c\tau_{vd}$, particularly at high m_{vd} values

FRVZ vector portal interpretation: (ϵ , m_{vd}) limits

 2D limits obtained as a function of m_{γd} & kinetic mixing parameter ε **ggF+WH+VBF** Full FRVZ combination

- For each generated (m_{γd}, cτ_{γd}) pair, the analysis efficiency is extrapolated to the 2D plane:
 - Along **ɛ** using the lifetime reweighting curves
 - Along m_{γd} according to γ_d branching ratio
- Combination renders strongest limits up-to-date for displaced LJ searches in ATLAS

Status and some comments on Run-3

Run-2

- No new physics for now!
- $[\varepsilon, m_{yd}]$ limits for full combination \rightarrow Strongest ATLAS exclusion for displaced LJ searches!
- Tentative future combination with prompt LJ Run-2 search (expected for ICHEP)

Run-3: Preliminary studies

- Inclusive production analysis is ongoing!
- Several opportunities for improvement:

Improved trigger strategy

Exploring NarrowScan+VBF for µDPJ signatures

CalRatio+VBF for caloDPJ signatures

Implement updated taggers

NN taggers trained in newest release for performance improval Displaced vertexing in MS

Further constrain µDPJ channel

Improved background estimation

Tentative bump hunt background estimation in µDPJ channel

Mono-LJ signature

e.g., E_T^{miss} /jet + pLJ/dLJ Sensitive also to inelastic DM models

Run-3: Trigger studies for VBF

- Three signatures crucially related to trigger selections:
 - Production mode (VBF jets)
 - Displaced reconstruction (LLPs)
 - Missing transverse energy
- VBF & LLP: Low trigger efficiency on their own
- **Run-2 VBF:** E_T^{miss} trigger forces offline cut that reduces sensitivity to models with low intrinsic E_T^{miss} (e.g., HAHM)
- Run-3 wishlist:
 - **µDPJ:** VBF + NarrowScan MS-only
 - Inclusive NS ready for stable beam this year
 - caloDPJ: VBF + CalRatio
 - Studying low m_{ii} L1 threshold
 - CalRatio development ongoing

Signal region definitions

Requirement / Region	$\mathrm{SR}^{\mathrm{ggF}}_{2\mu}$	$\mathrm{SR}_{\mathrm{2c}}^{\mathrm{ggF}}$	$SR_{c+\mu}^{ggF}$	
Number of μ DPJs	2	0	1	٦
Number of caloDPJs	0	2	1	
Tri-muon MS-only trigger	yes	-	-	٦
Muon narrow-scan trigger	yes	-	yes	
CalRatio trigger	-	yes	-	
$ \Delta t_{caloDPJs} $ [ns]	-	< 2.5	-	٦
caloDPJ JVT	-	< 0.4	-	
$\Delta \phi_{ m DPJ}$	$> \pi/5$	$> \pi/5$	$> \pi/5$	
BIB tagger score	-	> 0.2	> 0.2	
$\max(\sum p_{\mathrm{T}})$ [GeV]	< 4.5	< 4.5	< 4.5	
∏ QCD tagger	-	> 0.95	> 0.9	

Requirement / Region	SR_c^{WH}	SR_{2c}^{WH}	$\mathrm{SR}^{WH}_{\mathrm{c}+\mu}$
Number of μ DPJs	0	0	1
Number of caloDPJs	1	2	1
Single-lepton trigger (μ, e)	yes	yes	yes
$m_{\rm T}$ [GeV]	> 120	-	-
$ t_{caloDPJ} $ [ns]	< 4	< 4	< 4
Leading (far) caloDPJ width	< 0.08	< 0.10 (0.15)	< 0.1
caloDPJ $p_{\rm T}$ [GeV]	> 30	-	-
JVT	< 0.6	< 0.6	< 0.6
$\min(\Delta \phi)$	$< 3\pi/5$	$< 3\pi/10$	$< 7\pi/20$
min(QCD tagger)	> 0.99	> 0.91	> 0.9

VBF

Requirement / Region	SR_μ	$\mathrm{SR}_\mathrm{c}^\mathrm{L/H}$
Number of DPJs	≥ 1	≥ 1
Leading DPJ type	$\mu \mathrm{DPJ}$	caloDPJ
	$E_{\mathrm{T}}^{\mathrm{miss}}$	
Trigger	Tri-muon MS-only	$E_{\mathrm{T}}^{\mathrm{miss}}$
	Muon narrow-scan	
$p_{\rm T}({\rm jet}) \; [GeV]$	> 30	> 30
$N_{ m jet}$	≥ 2	≥ 2
$m_{ m jj} \; [GeV]$	≥ 1000	≥ 1000
$ \Delta \eta_{ m jj} $	> 3	> 3
$ \Delta \phi_{ m jj} $	< 2.5	< 2.5
N_ℓ	0	0
$N_{b ext{-jet}}$	0	0
C _{DPJ}	> 0.7	-
$\Delta \phi_{ m min}$	-	> 0.4
$F^{\text{miss}}[C_eV]$	> 100	SR_{c}^{L} : [100, 225]
L _T [Gev]	> 100	$SR_c^H: > 225$
$-\mu \mathrm{DPJ}$ charge—	0	-
caloDPJ tagger	-	> 0.9
$\sum_{\Delta R=0.5} p_{\rm T} [{\rm GeV}]$	< 2	< 2

Systematic uncertainties

- ABCD method syst. uncertainty obtained by propagating the stat. uncertainty in the CRs
- Experimental uncerts. are evaluated from data/MC differences in the DPJ reconstruction and NN taggers
 - **Muon uncertainties:** Reconstruction of close-by muon, evaluated using a tag-and-probe method on $J/\Psi \rightarrow \mu\mu$ as function of $\Delta R_{\mu\mu}$
 - Normalisation uncerts.: Luminosity and pile-up reweighting
 - **NN taggers:** Set of weights is extracted from $Z \rightarrow \mu\mu$ or dijet samples and propagated to signal samples to cover MC/data differences
 - **Triggers:** Same close-by muon tag-and-probe approach is adapted to *trimuon* and *NarrowScan* triggers. *MET trigger* uncertainty obtained by propagating 100% of scale factors uncertainty
 - Jet energy resolution and energy scale are considered, plus additional jet energy scale uncert. for low EM fraction jets

Displaced LJs VBF

- First ATLAS search using VBF production
- Analysis performed for combination with previous ggF/WH iteration

1	Event selection	 VBF jets cuts, triggers, etc. Per-DPJ object selection µDPJ/caloDPJ signal regions
2	Background estim. & signal efficiency extrapol.	 Data-driven background estimate per SR (ABCD) Signal acceptance x efficien extrapol. as function of cr_{yd}
3	Exclusion limits on $B(H \rightarrow 2\gamma_d + X)$	Expected & observed ULs on $B(H \rightarrow 2\gamma_d + X)$ from VBF Full combination with ggF/WH limits

- Combination renders strongest limits
- up-to-date for displaced LJs searches in ATLAS
- Analysis presented in EPS-HEP 2023
- Paper submitted to EPJC on Nov/2023
- Inclusive production study for Run-3 is on the way!

Combination with observed ggF/WH limits

BR(H→2γ_d+X) combined limits: ggF+W/H+VBF

FRVZ vector portal interpretation: (ϵ , m_{vd}) limits

- For each generated (m_{γd}, cτ_{γd}) pair, the analysis efficiency is extrapolated to the 2D plane:
 - Along **ε** using the lifetime reweighting curves
 - Along m_{vd} according to γ_d branching ratio
- 2D limits are obtained doing a simultaneous fit of the available ggF/WH/VBF analysis channels in a $(m_{yd}, c\tau_{yd})$ grid
- The final limit is obtained by running a linear interpolation between the results from each simultaneous fit

VBF analysis

VBF analysis strategy (2) Per-DPJ type selection Inclusive DPJ selection: (1) Pre-selection μ DPJ channel \rightarrow Leading DPJ is μ DPJ caloDPJ channel \rightarrow Leading DPJ is caloDPJ VBF jets selection: At least two jets with p_{τ} >30 GeV (3) NN tagger cuts $m_{ii} > 1 \text{ TeV} |\Delta \eta_{ii}| > 3 |\Delta \Phi_{ii}| < 2.5$ Taggers implemented in ggF/WH Trigger: public analysis: μ DPJ channel \rightarrow NarrowScan || Trimuon || E_{τ}^{miss} μ DPJ channel \rightarrow Reject cosmic ray muons caloDPJ channel $\rightarrow E_{\tau}^{miss}$ caloDPJ channel \rightarrow Reject QCD & BIB jets Lepton veto (orthogonal to WH) *b*-jet veto (targeting *t*-quark decays) **Data-driven** (4) background estimate Further channel-specific cuts: **Reduce background** 0 ABCD method to estimate multijet **Trigger-related** Ο background in signal regions **DPJ** quality cuts Ο

VBF - Trigger strategy

Chain	Triggering on	Final state	Name	Year
Narrow Scan	Long-lived particles	µDРJ	HLT_mu20_msonly_mu6noL1_msonly_nscan05 HLT_mu20_msonly_mu10noL1_msonly_nscan05_noComb HLT_mu20_msonly_mu15noL1_msonly_nscan05_noComb HLT_mu20_msonly_iloosems_mu6noL1_msonly_nscan05_L1MU20_J40 HLT_mu20_msonly_iloosems_mu6noL1_msonly_nscan05_L1MU20_XE30 HLT_mu6_dRI1_mu20_msonly_iloosems_mu6noL1_dRI1_msonly	2015 2016 2016 2017/18 2017/18 2017/18
Trimuon	MS-only muons		HLT_3mu6_msonly	2015 2016 2017 2018
MET	E _T ^{miss}	µDPJ & caloDPJ	HLT_xe70 HLT_xe90_mht_L1XE50 HLT_xe110_mht_L1XE50 HLT_xe110_pufit_L1XE55 HLT_xe110_pufit_xe70_L1XE50	2015 2016 2016 2017 2018

VBF - Scale factors estimation for E_{τ}^{miss} trigger

- In order to trigger on E_T^{miss} below the efficiency plateau, scale factors (SFs) are estimated for each data period by studying the data/MC ratio in $Z \rightarrow \mu\mu$ events
- All events required to pass:
 - VBF selection: $N_{iets}(p_T > 30 \text{ GeV}) > 1, |\Delta \eta_{ii}| > 3, m_{ii} > 1 \text{ TeV}$
 - Standard ATLAS $Z \rightarrow \mu\mu$ selection
 - Lowest unprescaled single lepton trigger
- Events in numerator also required to pass lowest unprescaled E_{τ}^{miss} trigger
- Per data period:
 - Turn-on curves plotted as a function of proxy offline E_{T}^{miss}
 - $= E_T^{miss} + p_T^{\mu\mu}$
 - Data/MC ratio fitted with error function to obtain final

S	F	S

Trigger type	Trigger type Lowest Unprescaled Chain	
E _T ^{miss}	HLT_xe70 HLT_xe90_mht_L1XE50 HLT_xe110_mht_L1XE50 HLT_xe110_pufit_L1XE55 HLT_xe110_pufit_xe70_L1XE 50	2015 2016 2016 2017 2018
Single Muon	HLT_mu20_iloose_L1MU15 HLT_mu26_ivarmedium	2015 2016-201 8

 $Z \rightarrow \mu \mu$ MC vs. Run 2 Data

VBF µDPJ channel

VBF µDPJ channel selection

µDPJ ABCD plane

Variables

- 1. Leading μ DPJ isolD Sum of p_{τ} of tracks inside cone with R=0.5 around leading μ DPJ ID track
- 2. Leading µDPJ net charge

Region	isoID [GeV]	Charge [e]
А	0 - 2	0
В	0 - 2	≥ 1
С	2 - 20	≥ 1
D	2 - 20	0

ABCD Yield	$m(\gamma_d) = 0.017 \text{GeV}$ $c\tau = 2 \text{mm}$	$m(\gamma_d) = 0.05 \text{GeV}$ $c\tau = 7 \text{mm}$	$m(\gamma_d) = 0.9 \text{GeV}$ c7 = 115 mm	$m(\gamma_d) = 2GeV$ $c\tau = 175mm$	$m(\gamma_d) = 6 \text{GeV}$ $c\tau = 600 \text{mm}$	$m(\gamma_d) = 25 \text{GeV}$ $c\tau = 1200 \text{mm}$	$m(\gamma_d) = 40 \text{GeV}$ $c\tau = 1400 \text{mm}$
nA	7.0±0.5	7.0±0.5	119.1±2.1	107.4±1.9	38.0±1.1	4.0±0.4	1.5±0.2
nB	0.9±0.2	0.8±0.2	2.3±0.3	3.0±0.3	2.6±0.3	1.7±0.3	1.5±0.2
nC	0.1±0.1	0.1±0.0	0.2±0.1	0.2±0.1	0.2±0.1	0.2±0.1	0.1±0.1
nD nA estimate	0.6±0.1	0.6±0.1	10.1±0.6	9.3±0.6	3.2±0.3	0.4±0.1	0.1±0.0

ABCD Yield	$m(\gamma_d) = 0.4 \text{GeV}$ $c\tau = 50 \text{mm}$	$m(\gamma_d) = 0.4 \text{GeV}$ $c\tau = 5 \text{mm}$	$m(\gamma_d) = 0.4 \text{GeV}$ $c\tau = 500 \text{mm}$	$m(\gamma_d) = 10 \text{GeV}$ $c\tau = 900 \text{mm}$	$m(\gamma_d) = 15 \text{GeV}$ $c\tau = 1000 \text{mm}$	Run 2 Data
nA	178.7±3.6	168.3±3.4	33.8±1.5	19.3±1.7	8.8±1.1	41
nB	2.2±0.4	1.6±0.3	0.4±0.2	1.9±0.7	4.5±3.0	44
nC	0.3±0.1	0.2±0.1	0.1±0.1	0.2±0.1	0.3±0.1	22
nD	16.4±1.1	15.4±1.0	3.2±0.6	1.6±0.3	0.6±0.2	21
nA estimate						42.0 ± 14.3

 $BR(H\rightarrow 2\gamma_d+X)=10\%$

ABCD validation: subplane BC

- Due to lack of statistics in ABCD subplanes, cut is relaxed to E_{τ}^{miss} > 20 GeV to allow more events to enter BC & DC
- Prediction closes with default cuts
- Correlation ~5%
- Good agreement when sliding threshold in µDPJ ID isolation

ABCD Yield	$m(\gamma_d) = 0.017 \text{GeV}$ $c\tau = 2\text{mm}$	$m(\gamma_d) = 0.05 \text{GeV}$ $c\tau = 7 \text{mm}$	$m(\gamma_d) = 0.9 \text{GeV}$ $c\tau = 115 \text{mm}$	$m(\gamma_d) = 2GeV$ $c\tau = 175mm$	$m(\gamma_d) = 6 \text{GeV}$ $c\tau = 600 \text{mm}$	$m(\gamma_d) = 25 \text{GeV}$ $c\tau = 1200 \text{mm}$	$m(\gamma_d) = 40 \text{GeV}$ $c\tau = 1400 \text{mm}$
nA	0.3±0.1	0.2±0.1	1.1±0.2	1.7±0.2	1.8±0.2	0.7±0.2	0.5±0.1
nB	1.0±0.2	1.3±0.2	2.1±0.3	2.9±0.3	1.9±0.2	2.0±0.3	2.0±0.3
nC	0.1±0.1	0.1±0.0	0.2±0.1	0.3±0.1	0.3±0.1	0.3±0.1	0.2±0.1
nD nA estimate	0.1 ± 0.0	0.0±0.0	0.1±0.1	0.1±0.1	0.1±0.1	0.0±0.0	0.0±0.0

ABCD Yield	$m(\gamma_d) = 0.4 \text{GeV}$ $c\tau = 50 \text{mm}$	$m(\gamma_d) = 0.4 \text{GeV}$ $c\tau = 5 \text{mm}$	$m(\gamma_d) = 0.4 \text{GeV}$ $c\tau = 500 \text{mm}$	$m(\gamma_d) = 10 \text{GeV}$ $c\tau = 900 \text{mm}$	$m(\gamma_d) = 15 \text{GeV}$ $c\tau = 1000 \text{mm}$	Run 2 Data
nBC1	1.7±0.3	0.4±0.2	0.4±0.3	1.9±0.8	3.7±3.0	25
nBC2	2.2±0.4	2.8±0.4	0.3±0.2	0.8±0.2	2.4±1.0	136
nBC3	0.3±0.1	0.8±0.4	0.1±0.1	0.2±0.1	0.1 ± 0.1	102
nBC1	0.1±0.1	0.1±0.1	0.1±0.1	0.0±0.0	0.1 ± 0.1	20
nBC1 estimate	1.1.1. A	1	1			26.7±6.9

 $BR(H \rightarrow 2\gamma_d + X) = 10\%$

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Cut on $\mu DPJ \Sigma_{\Delta B=0.5} p_T [GeV]$

28

4.5

4.0

ABCD validation: subplane DC

- Due to lack of statistics in ABCD subplanes, cut is relaxed to E_{τ}^{miss} > 20 GeV to allow more events to enter BC & DC
- Prediction closes with default cuts
- Correlation ~10%
- Good agreement when sliding threshold in µDPJ ID isolation

ABCD Yield	$m(\gamma_d) = 0.017 \text{GeV}$ $c\tau = 2\text{mm}$	$m(\gamma_d) = 0.05 \text{GeV}$ $c\tau = 7 \text{mm}$	$m(\gamma_d) = 0.9 \text{GeV}$ $c\tau = 115 \text{mm}$	$m(\gamma_d) = 2GeV$ $c\tau = 175mm$	$m(\gamma_d) = 6 \text{GeV}$ $c\tau = 600 \text{mm}$	$m(\gamma_d) = 25 \text{GeV}$ $c\tau = 1200 \text{mm}$	$m(\gamma_d) = 40 \text{GeV}$ $c\tau = 1400 \text{mm}$
nA	<0.1	0.1±0.02	1.6±<0.1	1.5±0.07	0.5±0.04	<0.1	< 0.1
nB	< 0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1
nC	<0.1	0	< 0.1	0.2±0.1	<0.1	<0.1	0
nD nA estimate	<0.1	<0.1	0.3±0.03	0.3±0.03	0.2±0.02	0	0

ABCD Yield	$m(\gamma_d) = 0.4 \text{GeV}$ $c\tau = 50 \text{mm}$	$m(\gamma_d) = 0.4 \text{GeV}$ c7 = 5mm	$m(\gamma_d) = 0.4 \text{GeV}$ $c\tau = 500 \text{mm}$	$m(\gamma_d) = 10 \text{GeV}$ $c\tau = 900 \text{mm}$	$m(\gamma_d) = 15 \text{GeV}$ $c\tau = 1000 \text{mm}$	Run 2 Data
nDC1	2.4±0.13	2.6±0.14	4.6±0.6	< 0.1	<0.1	55
nDC2	< 0.1	<0.1	< 0.1	< 0.1	<0.1	50
nDC3	<0.1	< 0.1	0	< 0.1	<0.1	72
nDC4	0.6±<0.1	0.6±<0.1	0.9±0.3	< 0.1	<0.1	69
nDC1 estimate			the second second			47.9±10.5

 $BR(H \rightarrow 2\gamma_d + X) = 1\%$

ABCD validation: orthogonal plane

- Inverted $|\Delta \Phi_{ii}|$ cut
- Remove µDPJ centrality cut
- Prediction closes with default cuts
- Correlation ~13%
- Good agreement when sliding threshold in µDPJ ID isolation

ABCD Yield	$m(\gamma_d) = 0.017 \text{GeV}$ $c\tau = 2\text{mm}$	$m(\gamma_d) = 0.05 \text{GeV}$ $c\tau = 7 \text{mm}$	$m(\gamma_d) = 0.9 \text{GeV}$ $c\tau = 115 \text{mm}$	$m(\gamma_d) = 2GeV$ $c\tau = 175mm$	$m(\gamma_d) = 6 \text{GeV}$ $c\tau = 600 \text{mm}$	$m(\gamma_d) = 25 \text{GeV}$ $c\tau = 1200 \text{mm}$	$m(\gamma_d) = 40 \text{GeV}$ $c\tau = 1400 \text{mm}$
nA	0.1±0.02	0.1±0.02	0.2±0.08	1.9±0.08	0.6±0.04	<0.1	<0.1
nB	< 0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1
nC	0	0	0	0	<0.1	0	0
nD nA estimate	<0.1	0	0.1±0.02	0.1±0.02	<0.1	0	0

ABCD Yield	$m(\gamma_d) = 0.4 \text{GeV}$ $c\tau = 50 \text{mm}$	$m(\gamma_d) = 0.4 \text{GeV}$ $c\tau = 5 \text{mm}$	$m(\gamma_d) = 0.4 \text{GeV}$ $c\tau = 500 \text{mm}$	$m(\gamma_d) = 10 \text{GeV}$ $c\tau = 900 \text{mm}$	$m(\gamma_d) = 15 \text{GeV}$ $c\tau = 1000 \text{mm}$	Run 2 Data
nA'	2.68±0.14	2.58±0.14	0.54±<0.1	0.37±0.1	0.11±<0.1	54
nB'	< 0.1	<0.1	0	< 0.1	< 0.1	75
nC'	< 0.1	<0.1	0	0	0	21
nD'	$0.21 \pm < 0.1$	0.23±<0.1	< 0.1	<0.1	0	20
nA' estimate	272.00 BOX 2	all a m			hin C	63±20

 $BR(H \rightarrow 2\gamma_d + X) = 1\%$

VBF caloDPJ channel

VBF caloDPJ channel breakdown

VBF caloDPJ channel breakdown

Subplanes VR

VBF jets cuts & $|\Delta \Phi_{ij}| < 2.5$ Lepton & *b*-jet vetos E_T^{miss} trigger $E_T^{miss} > 100 \text{ GeV}$ $\Delta \Phi$ (jet. E_T^{miss}) > 0.4

Leading DPJ is caloDPJ caloDPJ gapRatio >0.9 caloDPJ BIBtagger score >0.2 caloDPJ |timing| <4 ns caloDPJ JVT score <0.4 caloDPJ QCD tagger score >0.5

BC caloDPJ ID isolation \rightarrow [2, 20] GeV caloDPJ OCD tagger score \rightarrow [0.8.1]

DC caloDPJ ID isolation \rightarrow [0, 20] GeV caloDPJ QCD tagger score \rightarrow [0.8,0.9]

Low MET SR

Orthogonal plane VR

Lepton & *b*-jet vetos

 $E_{T}^{miss} > 100 \text{ GeV}$ $\Delta \Phi(\text{jet}, E_{T}^{miss}) < 0.4$

caloDPJ QCD tagger score >0.5

caloDPJ QCD tagger score \rightarrow [0.8,1]

VBF jets cuts & $|\Delta \Phi_{ij}| < 2.5$ Lepton & *b*-jet vetos E_T^{miss} trigger $E_T^{miss} \rightarrow [100, 225] \text{ GeV}$ $\Delta \Phi(\text{jet}, E_T^{miss}) > 0.4$

Leading DPJ is caloDPJ caloDPJ gapRatio >0.9 caloDPJ BIBtagger score >0.2 caloDPJ |timing| <4 ns caloDPJ JVT score <0.4 caloDPJ QCD tagger score >0.5

caloDPJ ID isolation \rightarrow [0, 2] GeV caloDPJ QCD tagger score \rightarrow [0.9,1]

High MET SR

VBF jets cuts & $|\Delta \Phi_{jj}| < 2.5$ Lepton & *b*-jet vetos E_T^{miss} trigger $E_T^{miss} > 225$ GeV $\Delta \Phi$ (jet, E_T^{miss}) > 0.4

Leading DPJ is caloDPJ caloDPJ gapRatio >0.9 caloDPJ BIBtagger score >0.2 caloDPJ |timing| <4 ns caloDPJ JVT score <0.4 caloDPJ QCD tagger score >0.5

caloDPJ ID isolation \rightarrow [0, 2] GeV caloDPJ QCD tagger score \rightarrow [0.9,1]

caloDPJ ABCD: $E_T^{miss} > 225 \text{ GeV}$

Variables

1. Leading caloDPJ isolD Sum of p_T of tracks inside cone with R=0.5 around leading µDPJ ID track

2. Leading caloDPJ QCD tagger score

Region	isoID [GeV]	QCD tagger score
А	0 - 2	0.9 - 1
В	0 - 2	0.9 - 1
С	2 - 20	0.8 - 0.9
D	2 - 20	0.8 - 0.9

ABCD Yield	$m(\gamma_d) = 0.017 \text{GeV}$ $c\tau = 2 \text{mm}$	$m(\gamma_d) = 0.05 \text{GeV}$ $c\tau = 7 \text{mm}$	$m(\gamma_d) = 0.9 \text{GeV}$ $c\tau = 115 \text{mm}$	$m(\gamma_d) = 2GeV$ $c\tau = 175mm$	$m(\gamma_d) = 6 \text{GeV}$ $c\tau = 600 \text{mm}$	$m(\gamma_d) = 25 \text{GeV}$ $c\tau = 1200 \text{mm}$	$m(\gamma_d) = 40 \text{GeV}$ $c\tau = 1400 \text{mm}$
nA	17.0±0.8	16.5±0.8	13.2±0.7	12.9±0.6	9.5±0.6	6.2±0.5	4.3±0.4
nB	1.2±0.2	1.4±0.2	1.4±0.2	1.0±0.2	1.2±0.2	0.6±0.1	0.6±0.1
nC	0.1±0.1	0.2±0.1	0.2±0.1	0.0 ± 0.0	0.1 ± 0.1	0.1±0.1	0.1 ± 0.1
nD nA estimate	1.3±0.2	1.5±0.2	1.9±0.2	2.2±0.3	1.3±0.2	0.6±0.2	0.3±0.1

ABCD Yield	$m(\gamma_d) = 0.1 \text{GeV}$ $c\tau = 15 \text{mm}$	$m(\gamma_d) = 0.4 \text{GeV}$ $c\tau = 50 \text{mm}$	$m(\gamma_d) = 10 \text{GeV}$ $c\tau = 900 \text{mm}$	$m(\gamma_d) = 15 \text{GeV}$ $c\tau = 1000 \text{mm}$	Run 2 Data
nA	16.8±1.1	12.3±1.0	8.4±2.1	8.6±2.0	46.0
nB	1.5±0.3	0.7±0.2	2.2±1.3	0.5±0.2	9.0
nC	0.1 ± 0.1	0.1 ± 0.1	0.0 ± 0.0	0.0 ± 0.0	11.0
nD	1.6 ± 0.3	1.1 ± 0.4	0.3±0.1	0.3±0.2	35.0
nA estimate					28.6±13.8

 $BR(H \rightarrow 2\gamma_d + X) = 10\%$

caloDPJ ABCD: $E_{\tau}^{miss} \in [100, 225]$ GeV

- Using E_T^{miss} trigger SFs allows to explore low E_T^{miss} SR for statistical combination with high E_T^{miss} SR & μ DPJ SR
- Other selections remain unchanged wrt. high E_T^{miss} SR
- Slightly worse sensitivity compared to high E_T^{miss} SR

ABCD Yield	$m(\gamma_d) = 0.017 \text{GeV}$ $c\tau = 2 \text{mm}$	$m(\gamma_d) = 0.05 \text{GeV}$ $c\tau = 7 \text{mm}$	$m(\gamma_d) = 0.9 \text{GeV}$ $c\tau = 115 \text{mm}$	$m(\gamma_d) = 2GeV$ $c\tau = 175mm$	$m(\gamma_d) = 6 \text{GeV}$ $c\tau = 600 \text{mm}$	$m(\gamma_d) = 25 \text{GeV}$ $c\tau = 1200 \text{mm}$	$m(\gamma_d) = 40 \text{GeV}$ $c\tau = 1400 \text{mm}$
nA	52.3±1.2	53.2±1.2	44.3±1.1	41.0±1.0	32.6±0.9	22.2±0.8	16.4±0.7
nB	4.3±0.3	4.3±0.3	3.8±0.3	3.9±0.3	3.3±0.3	2.6±0.3	1.4±0.2
nC	0.4±0.1	0.5±0.1	0.8±0.2	0.6±0.1	0.5±0.1	0.4±0.1	0.3±0.1
nD nA estimate	4.6±0.3	4.4±0.3	6.7±0.4	5.9±0.4	4.7±0.3	3.1±0.3	2.0±0.2

ABCD Yield	$m(\gamma_d) = 0.1 \text{GeV}$ $c\tau = 15 \text{mm}$	$m(\gamma_d) = 0.4 \text{GeV}$ $c\tau = 50 \text{mm}$	$m(\gamma_d) = 10 \text{GeV}$ $c\tau = 900 \text{mm}$	$m(\gamma_d) = 15 \text{GeV}$ $c\tau = 1000 \text{mm}$	Run 2 Data
nA	49.0±1.6	35.2±1.4	27.7±2.8	37.5±5.3	923.0
nB	4.1 ± 0.4	3.7±0.4	4.0±1.4	2.2±0.6	224.0
nC	0.5±0.2	0.4±0.1	0.6±0.5	0.1±0.1	256.0
nD	4.2±0.4	5.2±0.5	4.8±1.7	4.2±1.1	1123.0
nA estimate					982.6±94.6

 $BR(H \rightarrow 2\gamma_d + X) = 10\%$

ABCD validation: subplane BC

- Cut is relaxed to $E_T^{miss} > 100$ GeV to allow more events to enter BC & DC
- Prediction closes with default cuts
- Correlation ~3%
- Good agreement when sliding threshold in both axes

Events

BC yield	$m(\gamma_d) = 0.1 \text{GeV}$ $c\tau = 15 \text{mm}$	$m(\gamma_d) = 0.4 \text{GeV}$ $c\tau = 50 \text{mm}$	$m(\gamma_d) = 10 \text{GeV}$ $c\tau = 900 \text{mm}$	$m(\gamma_d) = 15 \text{GeV}$ c\tau = 1000 mm	Run 2 Data
nBC1	4.6±0.5	3.7±0.4	4.3±1.5	2.1±0.6	165.0
nBC2	1.0 ± 0.2	0.8±0.2	1.9 ± 1.0	0.6±0.3	68.0
nBC3	0.0 ± 0.0	0.1 ± 0.1	0.5 ± 0.5	0.0 ± 0.0	71.0
nBC4	0.5±0.2	0.4±0.2	0.1 ± 0.1	0.1 ± 0.1	196.0
nBC1 estimate		Second and Second second		The schedule control of	187.7±34.6

$$BR(H \rightarrow 2\gamma_d + X) = 10\%$$

Cut on cDPJ QCDtagger score

ABCD validation: subplane DC

- $E_T^{miss} > 100 \text{ GeV}$ as mentioned before
- Prediction closes with default cuts
- Correlation ~2%
- Good agreement when sliding threshold in both axes

DC yield	$m(\gamma_d) = 0.1 \text{GeV}$ $c\tau = 15 \text{mm}$	$m(\gamma_d) = 0.4 \text{GeV}$ $c\tau = 50 \text{mm}$	$m(\gamma_d) = 10 \text{GeV}$ $c\tau = 900 \text{mm}$	$m(\gamma_d) = 15 \text{GeV}$ $c\tau = 1000 \text{mm}$	Run 2 Data
nDC1	3.4±0.4	3.7±0.5	3.0±1.4	3.4±1.1	548.0
nDC2	0.4±0.2	0.3±0.1	0.1 ± 0.1	0.1 ± 0.1	125.0
nDC3	0.2 ± 0.1	0.2±0.1	0.6±0.5	0.0 ± 0.0	142.0
nDC4	2.4 ± 0.4	2.5±0.4	2.1±1.0	1.1±0.3	610.0
nDC1 estimate			7.5.5.5.4655.555.555		537.0±69.4

ABCD validation: orthogonal plane

- Inverted $|\Delta \Phi|$ (jet, E_T^{miss}) cut
- $E_T^{miss} > 100 \text{ GeV}$ as mentioned before
- Prediction closes with default cuts
- Correlation ~3%
- Good agreement when sliding threshold in both axes

(ABCD)' yield	$m(\gamma_d) = 0.1 GeV$	$m(\gamma_d) = 0.4 GeV$	$m(\gamma_d) = 10 GeV$	$m(\gamma_d) = 15 GeV$	Run 2 Data
	$c\tau = 15mm$	$c\tau = 50$ mm	$c\tau = 900 \text{mm}$	$c\tau = 1000 \text{mm}$	
nA'	7.7±0.6	4.4±0.5	5.3±1.6	2.4±0.6	233.0
nB'	1.1 ± 0.3	0.7±0.3	0.6±0.5	0.3 ± 0.1	69.0
nC'	0.1 ± 0.1	0.2±0.1	0.0 ± 0.0	0.0 ± 0.0	84.0
nD'	0.5 ± 0.2	0.8±0.2	0.2 ± 0.1	0.2 ± 0.1	314.0
nA' estimate					257.9±44.4

$$BR(H \rightarrow 2\gamma_d + X) = 10\%$$

More on VBF analysis

VBF - Lifetime reweighting

- Validation points agree with extrapolated curve for m_{vd} = 0.4 GeV within uncertainty
 - Disagreement in cDPJ low E_{τ}^{miss}
 - Extra syst. uncert. considered in low E_{τ}^{miss} SR for $c\tau > 50 mm$ to take into account non-closure

FRVZ vector portal interpretation: (ϵ , m_{vd}) limits

- 1. For each generated $(m_{\gamma d'} c \tau_{\gamma d})$ pair, the analysis efficiency is extrapolated to the 2D plane:
 - a. Along cT (ϵ) using the lifetime reweighting curves
 - b. Along m_{vd} according to γ_d branching ratio
- 2. 2D limits are obtained doing a simultaneous fit of the available ggF/WH/VBF analysis channels in a 100x100 grid in $(m_{vd}, c\tau_{vd})$
 - a. Contaminations from $\gamma_d \rightarrow e^+e^-$ in the µDPJ channels are not considered here
 - b. This step runs for each generated mass point
- The final limit is obtained by running a linear interpolation between the results that are obtained in step (2)
- "Wobbly" contour due to low resolution used when running the fit framework. This was done with about 13K fits!

