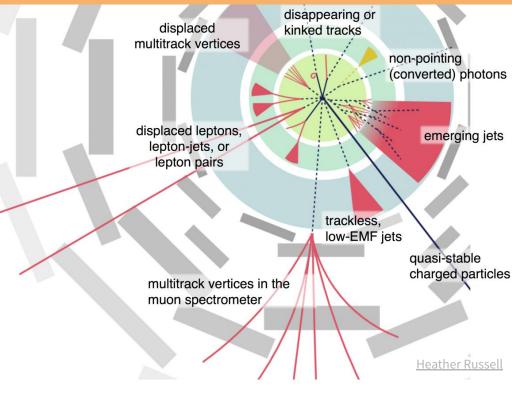
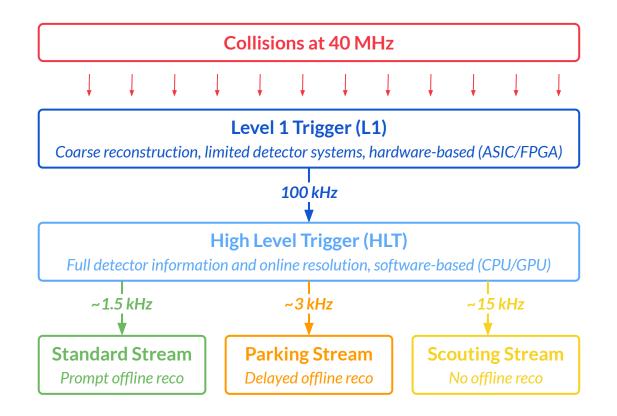


Long-Lived Particle Trigger Strategies with the CMS Detector


Kiley Kennedy, Princeton University Long-Lived Particle Workshop, 3 July 2024


Why LLP% Triggers?

- → A comprehensive and robust LLP search program should be sensitive to a broad range of LLP masses, lifetimes, and final states
- → Limited number of dedicated LLP triggers before Run 3 – most LLP analyses used "standard" prompt-based algorithms:
 - ◆ Trigger directly on LLP decay products → limited sensitivity to soft final states
 - ◆ Trigger on associated prompt objects → reduced model dependence, cross sections

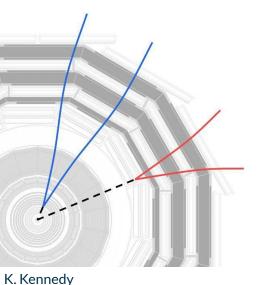
Sensitivity to many LLP signatures is <u>trigger-limited</u>, so it critical to develop dedicated triggers and leverage new triggering capabilities

The CMS Trigger System: Simplified

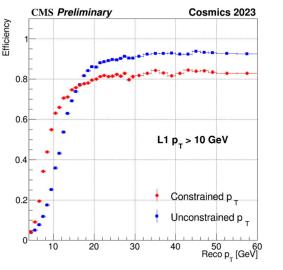
Trigger Development: Key Challenges

- → Low (reasonable) rates at L1 and HLT
- → Latency at L1 within budget
- → CPU resource usage at HLT within budget
- → Operational difficulties

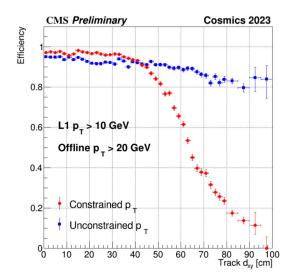
Overview

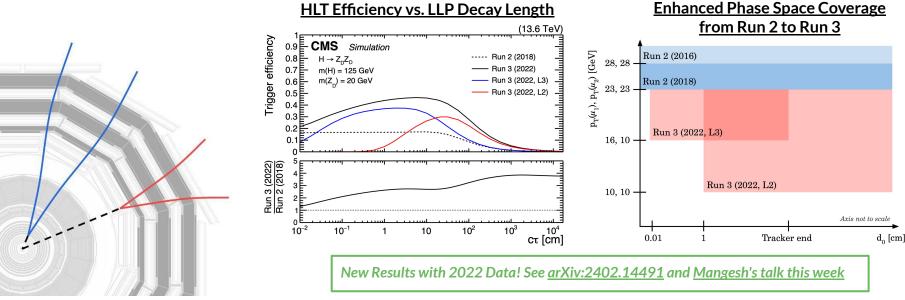

- → Introduction + Motivation
- → Case Study: Displaced Muon Triggers
- → Case Study: Displaced and Delayed Jet Triggers
- → Leveraging The Parking and Scouting Streams
- → Common Themes Across LLP Trigger Strategies
- → Conclusions + Outlook

Title Image Credit: Michael Hoch "CMS-The Art of Science"


K. Kennedy

Displaced Dimuon Triggers


- → **Target**: displaced muons reconstructed with the muon spectrometer and/or tracker subsystems
- \rightarrow Custom L1: Standard L1 muon reconstructions includes a beamspot (BS) constraint for p_{τ} calculation
 - In the barrel, implemented momentum assignment without the BS constraint \rightarrow New in Run 3!
 - Significantly improved reconstruction efficiency of displaced muons



L1 Efficiency vs. Displacement

Displaced Dimuon Triggers

- → **Target**: displaced muons reconstructed with the muon spectrometer and/or tracker subsystems
- → Dedicated HLT: Use both tracking and muon spectrometer subsystems to enhance acceptance
 - L2 Muons: reconstruction with only the muon system
 - L3 Muons: reconstruction with both the tracker and muon system; veto on prompt

K. Kennedy

CMS Performance Note

Displaced + Delayed Jet Triggers | Overview

Motivation:

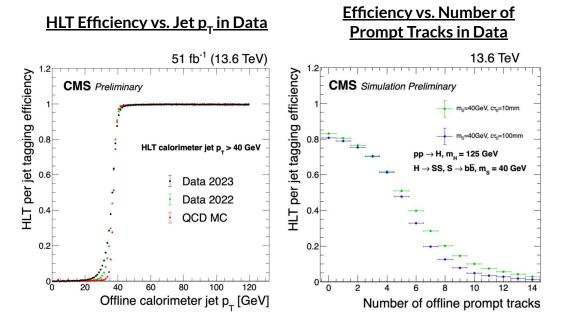
- → Maximize trigger acceptance across a range of signal lifetimes for hadronically decaying LLPs
- → Extend sensitivity to softer final states

Triggers Discussed Today:

- → Tracking-based displaced jets → Updated! in Run 3
- → ECAL-based delayed jets \rightarrow New! in Run 3
- → HCAL-based displaced & delayed jets \rightarrow New! in Run 3
- → MS-based displaced jets \rightarrow New! in Run 3

Note that the results discussed today focus on the Standard Reconstruction Stream

K. Kennedy


Long-Lived Particle Triggers at CMS | LLP Workshop, 3 July 2024

Displaced + Delayed Jet Triggers Tracking-Based Displaced Jet Triggers

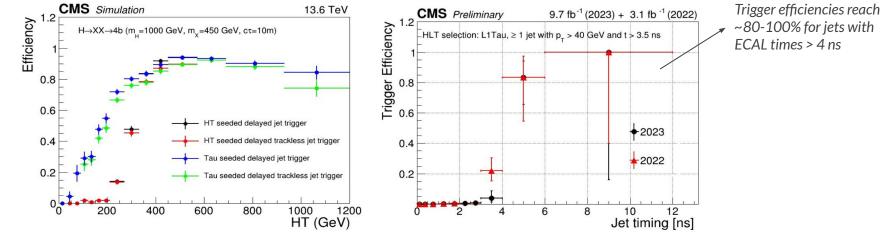
- → **Target**: displaced jets with displaced tracks and/or prompt track vetoes
- → L1 Strategy: seeds with $H_T > 430$ or with soft muons (muon $p_T > 6$ GeV and $H_T > 240$ GeV)
 - Soft muon triggers sensitive to signatures with b-jets in the final state
- → Dedicated HLT:
 - Inclusive: jet has at ≤ 1 prompt track
 - Displaced: if there is 1 prompt track, there must also be ≥ displaced track

Implemented in both Standard and Parking Stream (Standard shown)

New Results with 2022 Data! See CMS-PAS-EXO-23-013 and Jingyu's talk this week

8

Displaced + Delayed Jet Triggers ECAL-Based Delayed Jet Triggers

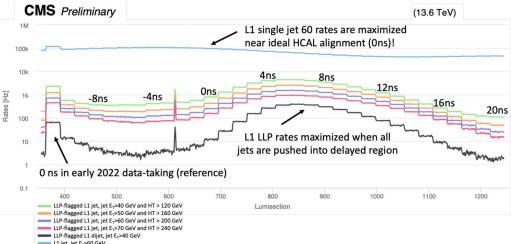

→ Target: delayed jet signatures using online ECAL timing at HLT

HLT Efficiency vs. HT in Signal

- → L1 Strategy: seeds with $H_T > 430$ or L1 Tau $p_T > 120$ GeV
 - Displaced jets from massive LLPs become collinear & can look like T leptons
- → **Dedicated HLT**: at least 1 or 2 jets with $p_T > 40$ GeV and ECAL timing delay
 - Key challenge: rates depend on ECAL crystal transparency excellent work by team to ensure good data quality

HLT Efficiency vs. Timing in Data

K. Kennedy


K. Kennedv

Displaced + Delayed Jet Triggers **HCAL-Based Displaced + Delayed Jet Triggers**

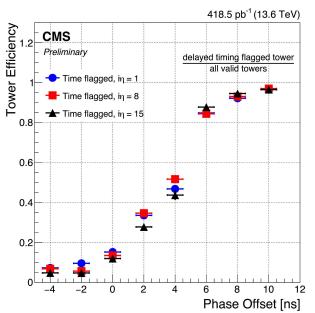
- Target: displaced & delayed jets using HCAL \rightarrow measurements at L1
 - Phase I HCAL barrel upgrade added depth segmentation $(1 \rightarrow 4 \text{ layers})$ and precision timing ASIC (0.5 ns resolution)
- **Custom L1**: at least 1 or 2 jets with either: \rightarrow
 - Depth flag: Minimal energy deposits in the first two layers and high energy deposits in the second two layers
 - <u>Time flag</u>: Significant time delays
- HLT Strategy: tracking- and ECAL-based HLT \rightarrow paths with lower H_{τ} thresholds

Timing Calibration Employed Special "Phase Scan" Runs

Shift HCAL clock w.r.t. the LHC clock to create artificially out-of-time jets in collisions

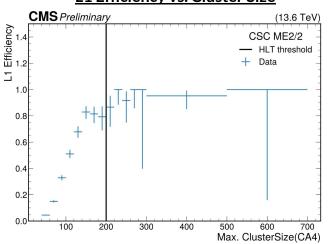
L1 iet, iet E_r>60 GeV

Long-Lived Particle Triggers at CMS | LLP Workshop, 3 July 2024

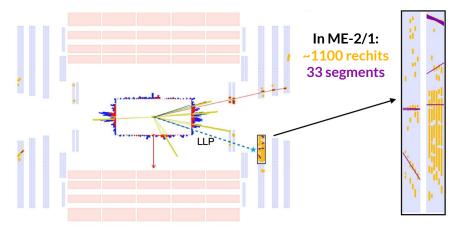

CMS Performance Note HCAL Phase I Upgrade

Displaced + Delayed Jet Triggers HCAL-Based Displaced + Delayed Jet Triggers

Long-Lived Particle Triggers at CMS | LLP Workshop, 3 July 2024


- → Target: displaced & delayed jets using HCAL measurements at L1
 - ◆ Phase I HCAL barrel upgrade added depth segmentation (1→4 layers) and precision timing ASIC (0.5 ns resolution)
- → Custom L1: at least 1 or 2 jets with either:
 - <u>Depth flag</u>: Minimal energy deposits in the first two layers and high energy deposits in the second two layers
 - <u>Time flag</u>: Significant time delays
- → HLT Strategy: tracking- and ECAL-based HLT paths with lower H_T thresholds

L1 Tower Efficiency vs. Time Delay


Displaced + Delayed Jet Triggers Muon Spectrometer-Based Displaced Jet Triggers

- → Target: hadronic showers in the cathode strip chambers (CSCs)
- → Custom L1: cut on the number of CSC hits N in a chamber (N configurable, varies per ring)
- → Dedicated HLT:
 - Clustering with Cambridge-Aachen algorithm R=0.4
 - Additional selections on cluster properties, including number of hits and number of rings with > 10 hits

L1 Efficiency vs. Cluster Size

Example Signal Event Display

K. Kennedy

Leveraging the Parking + Scouting Streams

arXiv:2403.16134 arXiv:2403.04584 arXiv:2112.13769

Parking at 3 kHz

Delayed Offline Reconstruction

- → Paradigm: save only RAW event content uses less computational resources, enabling higher rates and thus lower kinematic thresholds
- → Dedicated LLP Parking at 150 Hz
 - Both tracking- and ECAL-based displaced and delayed jet triggers
 - Lower thresholds (higher rates) compared to prompt
- → Used to extend sensitivity to long-lived HNLs with the 2018 B-Parking dataset:
 - Dataset: 41.6 fb⁻¹ (~12B BBbar enriched events)
 - See <u>arXiv:2403.04584</u> and <u>Anne-Mazarine's talk</u> this week

Leveraging the Parking + Scouting Streams

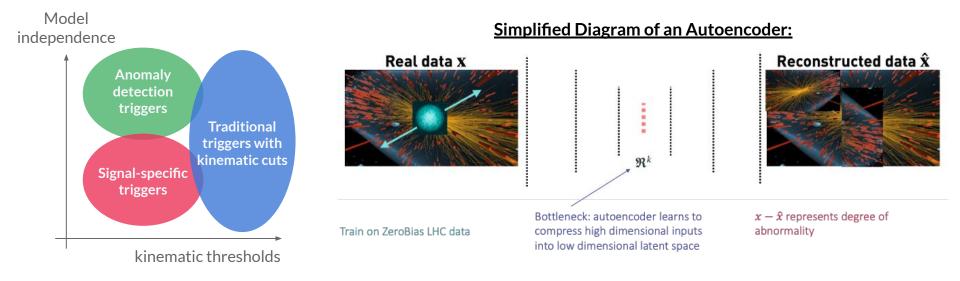
Scouting at 15 kHz

No Offline Reconstruction

- → Paradigm: only save limited number of online objects and variables (no RAW content available), enabling much higher rates and much lower thresholds
- → Used to extend coverage to very low-mass displaced dimuon resonances (as low as 0.3 GeV)
 - See <u>arXiv:2112.13769</u>

Electron and Photon Observables Available in the Run 3 Scouting Dataset

Observable	Definition
Electron/photon common quantities (calorimeter-based)	
$(\mathrm{E},p_{\mathrm{T}},\eta,\phi)$	ECAL SC four-momentum
$\sigma_{i\eta i\eta}$	Spread of the ECAL shower from the central crystal
H/E	Ratio of energy deposit in HCAL to ECAL
IE	ECAL isolation
I _H	HCAL isolation
r ₉	Relative energy deposit in $3x3 \eta - \phi$ matrix
seed ID	Crystal number of the central crystal
energy matrix	Energy deposit in each crystal of the SC
detector ID	Crystal number of each crystal of the SC
time matrix	Time stamp of each crystal of the SC
s _{minor} and s _{major}	Second moments of the SC energy matrix
rechitZeroSuppression	Flag indicating events with nonzero reconstructed hits
	Electron quantities only (tracker-based)
track (E, p_T , η , ϕ)	GSF track four-momentum
track d_0	Track d ₀
track d_z	Track dz
track χ^2 /dof	Reduced- χ^2 of the track fit
track missing hits	Missing hits in the tracker inner pixel region
track q	Track charge
$\Delta \eta_{\rm in}^{\rm seed}$	Difference in η between central ECAL crystal and inner track
$\Delta \phi_{\rm in}$	Difference in ϕ between SC and inner track
1/E - 1/p	Difference between the inverse of SC E and track p
I _{track}	Track isolation


Long-Lived Particle Triggers at CMS | LLP Workshop, 3 July 2024

arXiv:2403.16134

arXiv:2403.04584 arXiv:2112.13769

New Opportunities with Anomaly Detection Triggers

- → **Paradigm**: "What if we miss new physics because we did not design the right trigger?"
 - Anomaly detection triggers are sensitive to rare processes that we may not have triggers for including LLPs!
- → Two active efforts working on anomaly detection triggers with autoencoders at L1: <u>CICADA</u> & <u>AXOL1TL</u>

Common Themes Across LLP Trigger Strategies

Complementarity Across Subsystems

→ Measurements from different sub-detectors increase acceptance and lead to improved ct coverage

Sensitivity to Softer Final States

→ In addition to reconstructing displaced LLP decay products, ~all triggers discussed today focus on coverage of soft LLP decay products

Creative Use of Existing Information & Infrastructure

- → Using muon and tau L1 seeds
- → Exploiting capabilities of upgraded HCAL
- → Scouting + parking streams

Robust and exciting LLP trigger program!

K. Kennedy

Looking Ahead to the HL-LHC

What themes and strategies should we employ to improve LLP triggering at the HL-LHC?

Disclaimer: just some of my thoughts

- → Implement more dedicated LLP triggers at L1
 - Increased latencies at L1 enable more sophisticated algorithms
 - Advancements in putting ML on FPGAs e.g. CMS L1 anomaly detection efforts
 - Further motivated by upgrades, e.g. tracking L1 in CMS, full LAr granularity at L1 in ATLAS
- → Exploit detector timing capabilities
 - Upgrades to both CMS + ATLAS include dedicated precision timing detectors O(10 ps)
- → Wealth of opportunities with the CMS Scouting and ATLAS Trigger-Level Analysis streams
 - Proposal for CMS Scouting at 40 MHz (<u>Phase-2 Upgrade of the CMS Level-1 Trigger TDR</u>)
 - May be possible to save variables relevant for LLP searches!

Conclusions + Outlook

Conclusions

- → Active community of LLP enthusiasts at CMS have successfully implemented, commissioned, and analyzed a number of dedicated LLP triggers for Run 3
 - Displaced muon and displaced + delayed jet triggers shown today extend phase space to softer LLP final states
- → Several LLP analyses have taken advantage of the lower kinematic thresholds afforded by the CMS parking and scouting streams

Outlook

- → Continue to ensure LLP triggers take high-quality data through the end of Run 3
- → Extensive opportunities to develop dedicated LLP triggers at the HL-LHC!

