

BSM Results from the FASER Experiment at the LHC

Fourteenth workshop of the Long-Lived Particle Community July 5th , 2024

Yuxiao Wang on behalf of the FASER Collaboration

FASER Introduction

- ForwArd Search ExpeRiment.
- Search for new physics and neutrinos in the very forward physics region.
- The detector location (480 m downstream of the ATLAS interaction point) allows near background-free searches.

the FASER Detector

- small
- inexpensive
- 480 m downstream of the ATLAS collision point
- 10 cm radius of active volume
- 7 m long

BSM Program at FASER

- Open questions:
 - Understanding the nature of dark matter
 - the origin of neutrino masses
 - relative asymmetry in matter and anti-matter abundances in the Universe
- FASER is searching for light long-lived particles (LLPs) that are produced at or close to the ATLAS collision point:

 $pp \rightarrow LLP + X$, LLP travels ~480 m, LLP \rightarrow charged tracks + X or 2 photons

- FASER is sensitive to such decay signatures of LLP models:
 - dark photons
 - dark Higgs bosons
 - heavy neutral leptons (HNL)
 - axion-like particles (ALP)
- FASER probes unexcluded regions of the parameter space of LLP with Run 3 data.

Dark Photons at FASER

- Dark photons :
 - Hypothetical gauge bosons associated with a new U(1) gauge symmetry
 - Vector particles (spin-1)
 - Can act as a mediator to dark matter
- Defined through the Lagrangian items:

$$\mathcal{L} \supset \frac{1}{2} m_{A'}^2 A'^2 - \epsilon e \sum_f q_f A'^{\mu} \bar{f} \gamma_{\mu} f$$

- $m_{A'}$: dark photon's mass
- ϵ : dark photon's kinematic mixing parameter
- Σ : over all SM fermions f with SM electric charge q_f
- At the LHC, the dominant source of dark photons:
 - SM meson decay:
 - Neutral pion decay $\pi^0 \rightarrow A' \gamma$
 - Eta meson decay $\eta \rightarrow A' \gamma$
 - Dark bremsstrahlung $pp \rightarrow ppA'$

Dark Photons: Event Selection

- Blinded for E > 100 GeV events without any veto signals.
- Select e^+e^- pairs emerging in the decay volume:

- The signal region event selection requires:
 - In time with the LHC collisions;
 - no signal in veto scintillators;
 - signal in the donwstream scintillators;
 - two opposite sign tracks within fiducial volume;
 - total calorimeter energy > 500 GeV;
- The selection efficiency is about 50% in the parameter space where the analysis is most sensitive ($\epsilon = 3 \times 10^{-5}$, $m_{A'} = 25.1$ MeV)

Dark Photons: Backgrounds

- Veto inefficiency
 - smaller than 10^{-20} ; incoming muons $10^8 \Rightarrow$ negligible!
- Neutral hadrons
 - produced by upstream muon interactions
 - A final estimate of $(8.4 \pm 11.9) \times 10^{-4}$ events is found.
- Large-angle muons
 - zero events with E>500 GeV or extrapolated in the fiducial volume ⇒ negligible!
- neutrinos
 - use neutrino MC sample of 300 ab^{-1}
 - The total neutrino background scaled to 27.0 fb⁻¹ is estimated to be $(1.5 \pm 0.5 (stat.) \pm 1.9 (syst.)) \times 10^{-3}$ events.
- non-collision events
 - zero events with E>500 GeV or a reconstructed track ⇒ negligible!

Dark Photons: Results

- No events observed in 27.0 fb⁻¹ from 2022
- FASER set limits on previously unexplored parameter space
- (2.3 ± 2.3)×10⁻³ background events are expected.

ALPs at FASER

- Axion-like particles (ALP):
 - The generalizations of the axion, can couple to $SU(2)_L$ gauge bosons
 - Pseudoscalar particles (spin-0)
 - Can be a form of dark matter
- Defined through the Lagrangian items:

$$\mathcal{L} \supset -\frac{1}{2}m_a^2 a^2 - \frac{1}{4}g_{aWW}aW^{a,\mu\nu}\widetilde{W}^a_{\mu\nu}$$

- m_a : the ALP mass
- g_{aWW} : the ALP coupling parameter
- $W^{\mu\nu}$: the SU(2)_L field strength tensor
- Main source: B^0 , B^{\pm} meson decays

- Once produced, the ALP decays into two high energy photons
- Signal: Two photons appearing from "nothing" with ~TeV of EM energy
- Can decay anywhere between veto scintillators and preshower

ALPs: Event Selection

Blinded for E > 100 GeV events with a limited deposited charge in any veto scintillators.

Requirements:

- No signal in the veto scintillators
- No signal in the timing scintillator
- Evidence of EM Shower in preshower detector
- Significant energy deposit in electromagnetic calorimeter

Trigger and Data Quality			
Selecting events with calorimeter triggers			
Calorimeter timing $(> -5 \text{ ns and } < 10 \text{ ns})$			
Baseline Selection			
Veto/VetoNu Scintillator to have no signal (< 0.5 MIPs)			
Timing Scintillator to have no signal (< 0.5 MIPs)			
Signal Region			
Preshower Ratio to have EM shower in the Preshower (> 4.5)			
Second Preshower Layer to have signal $(> 10 \text{ MIPs})$			

Calorimeter to have a large deposit (> 1.5 TeV)

Selection efficiencies using MC:

- $m_a=140$ MeV, $g_{aWW}=2{ imes}10^{-4}~{
 m GeV^{-1}}$
- Cum. efficiency: calorimeter E > 20 GeV, to emulate calorimeter trigger in MC

Selection	Efficiency	Cum. Efficiency			
$m_a = 140 { m ~MeV}, g_{aWW} = 2 \times 10^{-4} { m ~GeV^{-1}}$					
Veto Signal nMIP < 0.5	99.6%	99.6%			
Timing Scintillator Signal nMIP < 0.5	97.8%	97.4%			
Preshower Ratio > 4.5	85.7%	83.5%			
Second Preshower $nMIP > 10$	98.6%	82.3%			
Calo $E > 1.5$ TeV	91.6%	95.4%			

ALPs: Backgrounds - Neutrinos

data + stat.

1200

1400

1600

1000

Second Preshower Layer nMIP

- From light and charm hadron decays
- Evaluated using MC simulations

Events / GeV

10

10-

 10^{-2}

10⁻³

 10^{-4}

2 2 5.1 MC 5.0 Z

0

200

400

600

Four regions are defined based on the location of neutrino interactions used to validate the neutrino background estimation

Calorimeter Region

liaht

charm

800

aser >

Preliminary

ALPs: Backgrounds

- Veto inefficiency
 - smaller than 10^{-20} ; incoming muons $10^8 \Rightarrow negligible!$
- Neutral hadrons
 - produced by upstream muon interactions
 - Calorimeter energy requirement E > 1.5 TeV ⇒ negligible!
- Large-angle muons
 - Evaluated using MC simulations
 - No events pass the selections applied ⇒ negligible!
- non-collision events
 - zero events with E>1.5 TeV or passing the calorimeter timing selections ⇒ negligible!

ALPs: Unblinded Results

- data luminosity 57.7 fb^{-1} .
- 1 data event observed in the signal region.
- Backgound expectation 0.42 ± 0.38 .
- Set limits on the previously unprobed parameter space.

- Shows preshower deposits consistent with an EM shower
- Calorimeter energy of 1.6 TeV

Future Plans

- FASER approved to run in Run4
 - large dataset with upgraded FASER at HL-LHC
- Predicted reach for FASER's dark photon and ALP searches with combined Run
 - 3 + Run 4 datasets
 - Assuming a total 250 fb⁻¹ for Run 3
 - Assuming a total 680 fb⁻¹ for Run 4

Summary and Outlook

- FASER explored new regions in the dark photon parameter space
- FASER has probed new ALPs parameter space at mass and coupling previously unexplored by previous experiments
- FASER expects to collect much more data in Run 3 and 4 allowing for more powerful searches for dark photons, ALPs, and other new physics models

The FASER Collaboration

99 collaborators, 27 institutions, 11 countries

THANKS!

BACKUP

Dark Photons: Systematics

Main sources of systematic uncertainties:

- signal generators used
- integrated luminosity
- stat. from MC simulated events
- track momentum scale and resolution
- tracking efficiency of single tracks
- tracking efficiency of two closely-spaced tracks
- the calorimeter energy scale calibration

Source	Value	Effect on signal yield
Signal Generator	$\frac{0.15{+}(E_{A'}/4{\rm TeV})^3}{1{+}(E_{A'}/4{\rm TeV})^3}$	$15-65\% \ (15-45\%)$
Luminosity	2.2%	2.2%
MC Statistics	$\sqrt{\sum W^2}$	1-3%~(1-2%)
Track Momentum Scale	5%	< 0.5%
Track Momentum Resolution	5%	< 0.5%
Single Track Efficiency	3%	3%
Two-track Efficiency	7%	7%
Calorimeter Energy Scale	6%	0-8%~(<1%)

ALPs: Systematics

- Sources of systematic uncertainties:
 - Theoretical: flux modelling and generator variations
 - Experimental:
 - MC modelling of detector response
 - luminosity uncertainties
 - MC statistics

signal systematics:

Signal Sample	Flux	Stat.	Luminosity	Calorimeter	Second Preshower Layer	Preshower Ratio
$m_a = 140 { m ~MeV}$	50 1%	1 90%	0.0%	260%	0.6%	7.0%
$g_{aWW} = 2 \times 10^{-4} \text{ GeV}^{-1}$	09.470	1.070		3.070	0.070	1.970
$m_a = 120~{\rm MeV}$	57 3%	3 5%	0.0%	16 2%	0.6%	6.0%
$g_{aWW} = 10^{-4} { m GeV^{-1}}$	01.070	3.970		10.370	0.070	0.970
$m_a = 300 { m ~MeV}$	58.0%	20%	0.0%	15.8%	0.6%	8 10%
$g_{aWW} = 2 \times 10^{-5} \text{ GeV}^{-1}$	$-1 \frac{30.070}{2.970} ^{2.970}$		15.870	0.070	19	

background systematics:

Event Rate			
$0.42~\pm~0.32~{ m (flux)}$			
\pm 0.14 (calo. energy)			
$\pm~0.06~(\mathrm{PS~ratio})$			
$\pm~0.02~(\mathrm{PS~1~nMIP})$			
$\pm~0.05~{ m (stat.)}$			
Total: $0.42 \pm 0.38 \ (90.6\%)$			

ALPs: Backgrounds - Neutrinos

> 1.5 TeV signal region		
Light	$0.23^{+0.01}_{-0.11}~{ m (flux)}\pm 0.11~{ m (exp.)}\pm 0.04~{ m (stat.)}$	
Charm	$0.19^{+0.32}_{-0.09}$ (flux) \pm 0.06 (exp.) \pm 0.03 (stat.)	
Total	$0.42 \pm 0.38 \; (\mathbf{90.6\%})$	