

Search for compressed higgsinos using low-momentum mildly-displaced tracks

Yuya Mino, Kyoto University LLP2024: Fourteenth workshop of the Long-Lived Particle Community Thursday 4 July 2024

INTRODUCTION

SUSY Searches in LHC

Strong production & Electroweak production in LHC

Different search strategies for different Lightest SUSY Particle (LSP)

Broad program of searches targetting different final states - Focus on "light Higgsinos" in this talk

SUSY production cross section in LHC

Electroweak Natura ness

If the bino & wino mass are decoupl light charginos & neutralinos $(\tilde{\chi}_1^0, \tilde{\chi}_1^{\pm}, \tilde{\chi}_1^{\pm})$ Higgsinos form a "compressed mass spectrum"

In the MSSM, the following equation holds by requiring minimization of the Higgs potential

$$-\frac{m_Z^2}{2} = |\mu^2| + m_{H_u}^2$$

Higgsino mass is close to the electroweak scale ($\mathcal{O}(100)$ GeV) ("Electroweak Naturalness")

led (
$$\mu \ll M_1, M_2$$
),

$$\tilde{\chi}_2^0$$
) are pure higgsinos

 $|\mu| \ll M_1, M_2$

$$m_{\tilde{\chi}^{\pm}_{1}} \sim \mu$$

$$m_{\tilde{\chi}^0_{1,2}} \sim \mu$$

4

Higgsino Searches by Collider Experiments

<u>Compressed higgsino states explored by existing searches (Soft 2L + Disappearing track)</u>

- Soft 2-lepton : Leptons too soft to be reconstructed
- * Disappearing track : $\tilde{\chi}_1^{\pm}$ lifetime is too short to pass enough inner detector layers

New analysis method required to cover the compressed mass region ("Higgsino gap")

Analysis Strategy

ANALYSIS : EVENT SELECTION

Event Selection

Large missing transverse momentum (E_T^{miss}) from the LSP

- * Trigger events and suppress background by requiring a large E_{T}^{miss}

* Require Initial State Radiation (ISR) topology to boost the SUSY system

Track Selection

Displaced track from the chargino decay

* E_T^{miss} alignment : $\tilde{\chi}_1^{\pm}$ boosted in the opposite direction of the ISR jet \rightarrow Track aligned with E_T^{miss} * Track Isolation : To reduce tracks from long-lived SM particles (τ lepton, strange hadrons), which produce multiple decay products, require isolated tracks

Yuya Mino

9

Signal Region Definition

- Require additional selections to improve sensitivity and define SRs
 - $E_{\rm T}^{\rm miss} > 600 {\rm ~GeV}$ \leftarrow Large $E_{\rm T}^{\rm miss}$
 - $2.0 < p_T < 5.0 \text{ GeV}$ Low-momentum track
 - Displaced track • $S(d_0) > 8$
- * SR subdivided into two $S(d_0)$ orthogonal bins to target different $\tilde{\chi}_1^{\pm}$ lifetime (= mass splitting)
 - <u>SR-Low</u> : $S(d_0) \in [8, 20]$
 - ② **<u>SR-High</u>** : *S*(*d*₀) ∈ [20, ∞]

ANALYSIS : BACKGROUND ESTIMATION

Background Estimation: Overview

Background : Large E_{T}^{miss} + **Displaced track with large** $S(d_{0})$ **Estimation method** * $Z \rightarrow \nu\nu, W \rightarrow \ell\nu$: Tracks from *B/D* or Strange hadrons (QCD track) ➡ Data-driven * $W \rightarrow \tau \nu$: Tracks from leptonic & hadronic τ decays (τ decay track) Semi data-driven

Background Estimation Method : QCD Tracks

<u>The $S(d_0)$ distribution of QCD tracks are difficult to model \Rightarrow Extract distribution from data</u>

* QCD tracks not from the W/Z bosons \Rightarrow Z + jets and W + jets have the same $S(d_0)$ distribution

Background Estimation Method : Tau Decay Tracks

- * Two CRs to normalize the τ decay track MC
 - Hadronic tau CR : Shift track p_T range from SR ([2:5] GeV \rightarrow [8:20] GeV) Leptonic tau CR : Require displaced muon $(S(d_0) > 3)$

- Calculate scale factor in high- p_T range and correct τ decay track in the SR

Systematic Uncertainty & Validation Results

Systematic uncertainties in the SRs

- SR-Low : ~11%
- SR-High : ~14%

<u>CR statistics</u> + <u>MC statistics</u>

Validation of BG estimation method

In each VR, the expected and observed
yields are consistent within the uncertainty

15

RESULTS

Unblinded Results

No significant data excess in both SRs

- Covered the higgsino gap (0.3 GeV <with a maximum reach of 170 GeV in the chargino mass

$$\Delta m(\tilde{\chi}_1^{\pm},\tilde{\chi}_1^0) < 0.9 ~{\rm GeV} \big),$$

	SR-Low	SR-High
Observed data	35	15
SM prediction	37 ± 4	14.8 ± 2.0
QCD track	14.0 ± 1.7	10.0 ± 1.6
$W(\rightarrow \tau_{\ell} \nu)$ +jets	9.6 ± 1.6	2.0 ± 0.6
$W(\rightarrow \tau_h \nu)$ +jets	10.6 ± 2.0	1.9 ± 0.8
Others	3.2 ± 0.7	0.8 ± 0.4

Yuya Mino

17

- Light Higgsinos are motivated by "Electroweak Naturalness"
- Performed the first displaced track search to explore the "higgsino gap"
- No significant data excess beyond the SM expectation

Exceed the LEP limit in the higgsino gap for the first time

<u>Phys. Rev. Lett. 132 (2024) 221801</u>

Background: QCD Track

- QCD tracks are mainly from the <u>Pileup vertex</u> or <u>Strange hadrons</u>
 - Modeling of QCD events are difficult \rightarrow Estimate QCD tracks using only data

Track Resolution

The chargino lifetime is $c\tau \approx \mathcal{O}(1)$ mm \Rightarrow Distinguish prompt decay tracks using the track $S(d_0)$

Chargino Branching Ratio & Lifetime

Signal & Background Cross-section

Standard Model Production Cross Section Measurements

LLP2024

Status: July 2018

* Full Run 2 data (149 fb⁻¹) → $\mathcal{O}(10^5 - 10^6)$ signal events

SM Particle Lifetime

Flavor tagging ($c\tau \sim \mathcal{O}(10 - 100) \,\mu\text{m}$)

Secondary vertex reconstruction

Yuya Mino

24

Limits by Direct Detection & Electron EDM

Limits from electron EDM

SM prediction by CKM matrix $\mathcal{O}(10^{-40}) e \text{ cm}$

Event Display

EVENT & TRACK SELECTION

Number of Events: Signal

* Cut flow for signal process with $(m(\chi_1^0), \Delta m(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0)) = (150, 0.5)$ GeV

Number of Events: Background

Cut flow for background processes

HIGH LUMINOSITY LHC (HL-LHC)

Inner Detector Upgrade

- Current inner detector consists of Pixels + Strips + TRT
 - Replaced by <u>all-silicon tracker (Inner Tracker; ITk)</u> for HL-LHC
- Increased coverage
 - $\bullet |\eta| < 2.5 \Rightarrow |\eta| < 4$
- 2 Reduced pixel pitch
 - IBL : $50 \times 250 \ \mu \text{m}^2 \rightarrow 25 \times 100 \ \mu \text{m}^2$
 - Other : $50 \times 400 \ \mu m^2 \rightarrow 50 \times 50 \ \mu m^2$
- Lower material budget 3
 - Maximum of 5% $X_0 \rightarrow 2\% X_0$

Expected Sensitivity in the HL-LHC

- The High-Luminosity LHC (HL-LHC) is scheduled to start from 2029

 - Chargino mass reach extended to ~250 GeV with current analyses

Expected to obtain about 3000 - 4000 fb⁻¹ in 10 years (~20 times the Run 2 statistics)

Expected Sensitivity in the HL-LHC

Considered 3 types of background tracks

- ① Fake tracks : Tracks reconstructed by random combinations
 - Negligible in the ITk geometry
- ② **Primary tracks** : Tracks from the primary vertex
 - → Efficiency and d_0 resolution of low- p_T track remains

almost the same overall

- ③ Pileup tracks : Tracks from pileup vertices
 - → Need to account for increase of pileup

(3) is reweighted so that the pileup effect is comparable with the case of $\langle \mu \rangle = 200$

Search Methods Using Mildly-Displaced Tracks

- Require two mildly-displaced tracks for further background suppression
 - Target tracks from $\tilde{\chi}_2^0$ decay 2
 - When $\Delta m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) \sim 1.0 \text{ GeV}$, $BR(\tilde{\chi}_0^2 \rightarrow \tilde{\chi}_0^1 \pi^+ \pi^-) \sim 40 \%$
 - Reconstruct mildly-displaced vertex with two tracks

