Fermilab **ENERGY** Office of Science

Searching for Heavy Neutral Leptons with muon detectors in the CMS experiment

Martin Kwok (Fermilab)

<u>LLP2024 - Tokyo</u> 4 July, 2024

Search for Heavy Neutral Lepton

- Non-zero SM Neutrino mass needs an explanation!
 - HNL enables see-saw mechanism
 - Connected to other unsolved problems (Baryon asymmetry, DM candidate, Anomalous g-2 [1],[2],[3],[4],[5])
- HNL that decays in the CMS muon system can lead to hadronic shower
 - Ideal to probe lower mass (<10GeV) / longer lifetime O(1m) parameter space
 - Consider a single HNL Type-1 See-saw model

Muon Detector Shower (MDS)

- Teaching a particle detector new tricks
- LLP decays hadronically in the muon system: Shower is detected as multiple hits in either the CSC or DT chambers
- Steel between muon stations can act as absorbers in a sampling calorimeter
 - Shielding of 12-27 interaction length (Background suppression factor ~107)

۳ ۳

5

3

2

Wheel 0

Solenoid magnet

HCAL

ECAL

Wheel 1

MB3

Wheel 2

RB3

RB2

SM particles seen at CMS

44.3

40.4

1.4 27.7°

1.5 25.2

1.6 22.8° 1.7 20.7° 1.8 18.8° 1.9 17.0°

2.0 15.4

2.2 12.6° 2.3 11.5°

2.4 10.4°

2.5 9.4

3.0 5.7

Muon Detector Shower (MDS)

- Sensitive to LLP with longer $c\tau \sim O(1-10m)$
- Good efficiency in both barrel and end-cap

12

0.8

0.6

0.4

0.2

200

300

DT cluster efficiency

 $H \rightarrow S \rightarrow d\bar{d}$ decay, $c\tau = 1 - 10 m$

of the LLP

Muon Detector Shower (MDS)

- Sensitive to "anything" (quarks, electrons, photons, taus) except muons!
- Independent of LLP mass!

Cluster efficiency can be well parametrized by the hadronic energy and EM energy

EXO-20-015

Searching long-lived HNL with MDS

Analysis Strategy

- Simple event topology:
 - Prompt lepton + single MDS cluster
- Consider all decay modes of the HNL
 - No penalty of signals due to W/Z branching ratios

Analysis Strategy

- Simple event topology:
 - Prompt lepton + single MDS cluster
- Consider all decay modes of the HNL
 - No penalty of signals due to W/Z branching ratios

Analysis Strategy

- Simple event topology:
 - Prompt lepton + single MDS cluster
- Consider all decay modes of the HNL
 - No penalty of signals due to W/Z branching ratios

Cluster side

- Improve S/B ratio
- Veto SM objects that can make cluster
- Reject OOT clusters
- Cluster size (N_{hit}) as main discrimination

Cluster selection

- Reject punchthrough jets:
 - Veto clusters matched to jets ($\Delta R < 0.4$)
- Reject muon bremsstrahlung shower:
 - Veto clusters matched to muons (ΔR < 0.8)
- CSC:
 - Veto clusters with RecHits in ME-1/1, ME-1/2
 - Veto clusters that are matched to RE1/2 hits
 - Veto clusters that are matched to MB1segments or RB1 hits
 - $-5 \text{ ns} < t_{cls} < 12 \text{ ns}$
- DT:
 - Veto clusters with > 1 RecHit in MB1 and in adjacent wheel
 - Veto region with no instrumentation (DT chimney)
 - $BX_{cls} = 0$

ABCD background estimation

- After cluster selections, background clusters and leptons are uncorrelated
 - Use ABCD method with N_{hits} and $\Delta \phi_{lep}$
 - Signals are back-to-back with cluster with large N_{hits}
- Use Out-of-Time(OOT) and in-time large $\Delta\phi(cls,{\rm MET})$ region as validation of ABCD method region

HNL signals

Backgrounds

ABCD background estimation

- After cluster selections, background clusters and leptons are uncorrelated
 - Use ABCD method with N_{hits} and $\Delta \phi_{lep}$
 - Signals are back-to-back with cluster with large N_{hits}
- Use Out-of-Time(OOT) and in-time large $\Delta\phi(cls, {\rm MET})$ region as validation of ABCD method region

In-time CR

OOT CR

CSC clusters

Closure test result

- Good agreement for closure tests both in-time/OOT validation regions
- Repeated this test with relaxed cluster selections in W+Jet MC
 - Also obtained good agreement (with limited statistics)

						~
Event category	Validation region	А	В	C	D	D (pred.)
Muon, DT-MB2	OOT	9	6924	944	0	1.2 ± 0.4
Muon, DT-MB3/MB4	OOT	11	593	86	1	1.6 ± 0.5
Muon, CSC	OOT	103	31074	4044	9	13.4 ± 1.3
Electron, DT	OOT	14	3301	366	2	1.6 ± 0.4
Electron, CSC	OOT	33	13774	1647	2	4.0 ± 0.7
Muon, DT-MB2	In time	10	5087	467	2	0.9 ± 0.3
Muon, DT-MB3/MB4	In time	9	785	107	2	1.2 ± 0.4
Muon, CSC	In time	31	7445	532	1	2.2 ± 0.4
Electron, DT	In time	8	2446	220	0	0.7 ± 0.3

$Z \to \mu \mu$ background in muon channel

- In rare cases, $Z \to \mu\mu$ could create MDS + μ topology if one of the muons are not reconstructed
- To estimate this background, we
 - invert the most stringent veto to define a CR
 - measure CR-to-SR transfer factor (T.F.) using $t\bar{t}$ events

$Z \to \mu \mu$ background in muon channel

- In rare cases, $Z \to \mu \mu$ could create MDS + μ topology if one of the muons are not reconstructed
- To estimate this background, we
 - invert the most stringent veto to define a CR
 - measure CR-to-SR transfer factor (T.F.) using $t\overline{t}$ events
- Validated with MC and data with smaller cluster sizes

$$W + J \operatorname{CR} Z \rightarrow \mu \mu \operatorname{CR} \operatorname{T.F.} Z \rightarrow \mu \mu \operatorname{SR}$$

Region	$N_D^{\rm CR}$	$\lambda_{ m ABCD\ bkg,D}^{ m CR}$	$\lambda_{Z o \mu \mu, D}^{CR}$	ζ	$\lambda^{SR}_{ ext{Z} ightarrow \mu\mu, ext{D}}$
CSC	129	45 ± 2	84 ± 12	$(4.8 \pm 1.3)\%$	3.9 ± 1.2
DT-MB2	35	12.2 ± 1.5	$\textbf{22.8} \pm \textbf{6.1}$	$(36 \pm 31)\%$	8.2 ± 7.4
DT-MB3/MB4	6	2.9 ± 0.7	3.1 ± 2.6	$(2 \pm 1)\%$	0.06 ± 0.06

Zmumu Bkg in CR x T.F = Zmumu Bkg in SR

Systematics uncertainties

- Background unc. dominated by statistical unc. of ABCD method
 - And uncertainty of T.F. for muon channel
- Uncertainty of cluster properties measured with tag-and-probe method in $Z \rightarrow \mu\mu$ brems
 - Validates the clusters in signal simulation

莽 Fermilab

Result

- No significant excess observed
 - ~1 sigma fluctuation in electron channel
- Proceed to set limits on HNL coupling v.s. mass plane

Limits on Majorana HNL

- Flavour independence:
 - MDS works for well for HNL mixings with e/mu/taus
 - Limits are different largely due to trigger acceptance

Limits on Majorana HNL

- Flavour independence:
 - MDS works for well for HNL mixings with e/mu/taus
 - Limits are different largely due to trigger acceptance
- Probes low-mass/small coupling parameter space
 - Most stringent limits around 2 3 GeV

Mixed-HNL coupling

• Flavour independence opens up mixed coupling interpretation

$$f_{\ell} = \frac{|V_{\ell N}|^2}{|V_{eN}|^2 + |V_{\mu N}|^2 + |V_{\tau N}|^2}$$

- Constrains the sum of relative couplings to 1
- Selected several benchmark at the edge of our sensitivity

 $c\tau = 1m$

 $m_N = 1.5 \,\,{\rm GeV}$

3.5 E 3.0 5

2.5

2.0

1.5

1.0

0.5

Can we do better in Run 3?

Muon Shower Triggers

- Many CMS run 2 LLP analysis do NOT have a dedicated LLP trigger
 - Major CMS Run 3 effort
- New dedicated trigger object implemented at L1 and HLT
 - MDS object available at HLT!

Event display in 2022 data

Overview MDS trigger (HMT) logic

Muon Shower Triggers for HNL

- HNL search was less trigger limited due to the presence of a clean lepton except for hadronic τ !
- New trigger allow us to trigger on the MDS + $\ell = e/\mu/\tau_h\,$ at HLT
 - MDS suppresses the rate
 - Very loose cut on the associated objects
 - Enable us to probe **long-lived** hadronic- τ channel
- Deployed in 2024 run!

HNL : MDS + $e/\mu/\tau$

- Single Lepton trigger thresholds:
 - Muon: ~25 GeV
 - Electron: ~30 GeV
 - τ_h : >100 GeV

Summary

- Muon Detector Shower(MDS) is a power new tool
 - Search with Run-2 data improves previous CMS limits ~2.3x at around 1-3 GeV
 - New triggers enable us to probe hadronic tau channel with MDS
- Stay tuned for Run 3 results!

Thank you!

