

Search for long-lived heavy neutral leptons in the decays of B mesons at CMS

On behalf of the CMS Collaboration

(*) ETH Zürich

LLP workshop 2024

4th July 2024

Context

• Heavy neutral leptons (HNLs) predicted in the Type I seesaw mechanism

Context

• Heavy neutral leptons (HNLs) predicted in the Type I seesaw mechanism

 $\mathcal{L}_{\text{mass}} = -\frac{1}{2} \begin{pmatrix} \bar{\nu}_L & \bar{\nu}_R^c \end{pmatrix} \begin{pmatrix} 0 & m_D \\ m_D & M \end{pmatrix} \begin{pmatrix} \nu_L^c \\ \nu_R \end{pmatrix} + \text{h.c}$

- Phenomenology based on Bondarenko et al. (2018) (arXiv:1805.08567)
 - ▶ HNLs are not degenerate in mass \Rightarrow they do not oscillate between themselves
 - HNLs interact through the mixing with SM neutrinos

Four model parameters: $m_{\rm N}, V_{\rm eN}, V_{\mu \rm N}, V_{\tau \rm N}$

► Lifetime $\tau_{\rm N} \sim m_{\rm N}^{-5} |V_{\rm N}|^{-2}$; $|V_{\rm N}|^2 = |V_{\rm eN}|^2 + |V_{\mu \rm N}|^2 + |V_{\tau \rm N}|^2$ Anne-Mazarine Lyon

- Search for long-lived HNLs in leptonic and semileptonic decays of B mesons
 - Abundant source of SM neutrinos
 - ▶ Daughters of B meson less boosted than those of $W \Rightarrow$ better acceptance

- Search for long-lived HNLs in leptonic and semileptonic decays of B mesons
 - Abundant source of SM neutrinos
 - ▶ Daughters of B meson less boosted than those of $W \Rightarrow$ better acceptance

B-parking data set

- More information in Andre's talk and Kiley's talk
- Large data set of bb pairs (arXiv:2403.16134)
 - Data collected in 2018
 - $\triangleright \mathcal{O}(10^{10}) \text{ bb events}$
 - ▶ Total luminosity of 41.6 fb⁻¹
- Set of triggers designed to capture the signatures of a B meson decay tion
- Summary

B-

parking

- Backup
- Single muon trigger
- Low transverse momentum (p_T) requirement (from 7 GeV on)
- ▶ Large transverse impact parameter significance

B-parking data set

- More information in Andre's talk and Kiley's talk
- Large data set of bb pairs (arXiv:2403.16134)
 - Data collected in 2018
 - $\triangleright \mathcal{O}(10^{10}) \text{ bb events}$
 - ▶ Total luminosity of 41.6 fb⁻¹
- Set of triggers designed to capture the signatures of a B meson decay tion
- Summary

Bparking

- Backup
- Single muon trigger
- Low transverse momentum (p_T) requirement (from 7 GeV on)
- ▶ Large transverse impact parameter significance

\Rightarrow Unprecedented possibility to study B decays at CMS

Anne-Mazarine Lyon

Backup

- Interpretation
 - Inclusive leptonic and semileptonic decays of B^{\pm} , B^{0} , B_{s} , and B_{c} mesons
 - Perform a **bump hunt** in the $\ell \pi$ invariant mass spectrum
 - Masses probed in the range $1 < m_N < 3$ GeV with unprecedented resolution

Interpretation

- Inclusive leptonic and semileptonic decays of B^{\pm} , B^{0} , B_{s} , and B_{c} mesons
- Perform a **bump hunt** in the $\ell \pi$ invariant mass spectrum
 - Masses probed in the range $1 < m_N < 3$ GeV with unprecedented resolution
 - At least one lepton is a μ that fires a B-parking trigger line

Interpretation

- Inclusive leptonic and semileptonic decays of B^{\pm} , B^{0} , B_{s} , and B_{c} mesons
- Backup
- Perform a **bump hunt** in the $\ell \pi$ invariant mass spectrum
 - \blacktriangleright Masses probed in the range $1 < m_{\rm N} < 3~{\rm GeV}$ with unprecedented resolution
- At least one lepton is a μ that fires a B-parking trigger line

 $\begin{array}{l} \blacktriangleright & B \to \mu_{\rm B} {\rm NX}, \, {\rm N} \to \mu^{\pm} \pi^{\mp} \Rightarrow {\rm dimuon \ channel} \\ \hline & B \to \mu_{\rm B} {\rm NX}, \, {\rm N} \to e^{\pm} \pi^{\mp} \\ \hline & B \to e_{\rm B} {\rm NX}, \, {\rm N} \to \mu^{\pm} \pi^{\mp} \end{array} \right\} \ {\rm mixed-flavour \ channel} \end{array}$

 \bullet Interpret the results against $\mathbf{mixed}\textbf{-flavour}$ mixing scenarios

Anne-Mazarine Lyon

common vertex using a kinematic vertex fitter

- HNLs constrained to decay within the tracker volume $(L_{xy} < 1 \text{ m})$
- The efficiency of the signal candidate reconstruction reaches a few percent for transverse displacement $L_{xy} > 50$ cm

Anne-Mazarine Lyon

Reconstruction Categorisation Signal selection Background Signal extraction

Context

Phase

2. Categorise the events to enhance sensitivity on different signal hypotheses

Quantity Label Definition low $L_{xy}/\sigma_{L_{xy}}$ $L_{xy}/\sigma_{L_{xy}} < 50$ $L_{xy}/\sigma_{L_{xy}}$ medium $L_{xy}/\sigma_{L_{xy}}$ $50 < L_{xy} / \sigma_{L_{xy}}^{-\sigma} < 150$ $L_{xy}/\sigma_{L_{xy}} > 150$ high $L_{xy}/\sigma_{L_{xy}}$ $\ell_{\rm B}$ charge $\neq \ell$ charge Relative lepton sign OS SS $\ell_{\rm B}$ charge = ℓ charge $\ell_{\rm B}\ell^{\pm}\pi^{\mp}$ mass low $\ell_{\rm B} \ell^{\pm} \pi^{\mp}$ mass $\ell_{\rm B}\ell^{\pm}\pi^{\mp}$ mass < 5.7 GeV high $\ell_{\rm B} \ell^{\pm} \pi^{\mp}$ mass $\ell_{\rm B}\ell^{\pm}\pi^{\mp}$ mass > 5.7 GeV Flavour channel dimuon $\ell_{\rm B}\ell = \mu\mu$ mixed-flavour $\ell_{\rm B}\ell = (\mu e, e\mu)$

Backup

Reconstruction Categorisation Signal selection Background Signal extraction

Context

Phase

2. Categorise the events to enhance sensitivity on different signal hypotheses

Quantity	Label	Definition
$L_{xy}/\sigma_{L_{xy}}$	low $L_{xy}/\sigma_{L_{xy}}$	$L_{xy}/\sigma_{L_{xy}} < 50$
	medium $L_{xy}/\sigma_{L_{xy}}$	$50 < L_{xy} / \sigma_{L_{xy}} < 150$
	high $L_{xy}/\sigma_{L_{xy}}$	$L_{xy}/\sigma_{L_{xy}} > 150$
Relative lepton sign	OS	ℓ_B charge $\neq \ell$ charge
	SS	$\ell_{\rm B}$ charge = ℓ charge
$\ell_B \ell^{\pm} \pi^{\mp}$ mass	low $\ell_{\rm B} \ell^{\pm} \pi^{\mp}$ mass	$\ell_{\rm B}\ell^{\pm}\pi^{\mp}$ mass < 5.7 GeV
	high $\ell_{\rm B} \ell^{\pm} \pi^{\mp}$ mass	$\ell_{\rm B}\ell^{\pm}\pi^{\mp}$ mass > 5.7 GeV
Flavour channel	dimuon	$\ell_{\rm B}\ell = \mu\mu$
	mixed-flavour	$\ell_B \ell = (\mu e, e\mu)$

Backup

Strategy

 Emphasizes signals with different lifetime hypotheses

- Reconstruction - Categorisation - Signal selection - Background - Signal extraction -

Context

Phase

2. Categorise the events to enhance sensitivity on different signal hypotheses

Quantity	Label	Definition
$L_{xy}/\sigma_{L_{xy}}$	low $L_{xy}/\sigma_{L_{xy}}$	$L_{xy}/\sigma_{L_{xy}} < 50$
	medium $L_{xy}/\sigma_{L_{xy}}$	$50 < L_{xy} / \sigma_{L_{xy}} < 150$
	high $L_{xy}/\sigma_{L_{xy}}$	$L_{xy}/\sigma_{L_{xy}} > 150$
Relative lepton sign	OS	$\ell_{\rm B}$ charge $\neq \ell$ charge
	SS	$\ell_{\rm B}$ charge = ℓ charge
$\ell_B \ell^{\pm} \pi^{\mp} \text{ mass}$	low $\ell_B \ell^{\pm} \pi^{\mp}$ mass	$\ell_{\rm B}\ell^{\pm}\pi^{\mp}$ mass < 5.7 GeV
	high $\ell_{\rm B} \ell^{\pm} \pi^{\mp}$ mass	$\ell_{\rm B}\ell^{\pm}\pi^{\mp}$ mass > 5.7 GeV
Flavour channel	dimuon	$\ell_{\rm B}\ell = \mu\mu$
	mixed-flavour	$\ell_B \ell = (\mu e, e\mu)$

Backup

- Emphasizes signals with different lifetime hypotheses
- Discriminate between Majorana and Dirac scenarios

Reconstruction — Categorisation — Signal selection — Background — Signal extraction —

 $\mathbf{Context}$

Phase

2. Categorise the events to enhance sensitivity on different signal hypotheses

Quantity	Label	Definition
$L_{xy}/\sigma_{L_{xy}}$	low $L_{xy}/\sigma_{L_{xy}}$	$L_{xy}/\sigma_{L_{xy}} < 50$
	medium $L_{xy}/\sigma_{L_{xy}}$	$50 < L_{xy} / \sigma_{L_{xy}} < 150$
	high $L_{xy}/\sigma_{L_{xy}}$	$L_{xy}/\sigma_{L_{xy}} > 150$
Relative lepton sign	OS	$\ell_{\rm B}$ charge $\neq \ell$ charge
	SS	$\ell_{\rm B}$ charge = ℓ charge
$\ell_{\rm B} \ell^{\pm} \pi^{\mp}$ mass	low $\ell_B \ell^{\pm} \pi^{\mp}$ mass	$\ell_{\rm B}\ell^{\pm}\pi^{\mp}$ mass < 5.7 GeV
	high $\ell_{\rm B} \ell^{\pm} \pi^{\mp}$ mass	$\ell_{\rm B}\ell^{\pm}\pi^{\mp}$ mass > 5.7 GeV
Flavour channel	dimuon	$\ell_{\rm B}\ell=\mu\mu$
	mixed-flavour	$\ell_B \ell = (\mu e, e\mu)$

Backup

- Emphasizes signals with different lifetime hypotheses
- Discriminate between Majorana and Dirac scenarios
- Emphasizes signals originating from different B meson species

 Treat the choice of the function as a discrete nuisance parameter (profiled)

Anne-Mazarine Lyon

1.45

m(μ±π⁺) (GeV)11

Results

 $\mathbf{Context}$

• No significant excess from the predicted background is observed in any of the $\ell^{\pm}\pi^{\mp}$ invariant mass distributions

Interpretation

1. Upper exclusion limits at 95% CL on $|V_N|^2$ are presented for the muon-exclusive mixing scenario, and for both the Majorana and Dirac hypotheses

 $\bullet\,$ Most stringent limits obtained in the mass range $1 < m_{\rm N} < 1.7$ GeV at a collider experiment to date

Interpretation

- 2. Additionally, limits on $|V_N|^2$ are derived for mixed-flavour mixing scenario
- Mixing scenarios specified by the ratios $(r_{\rm e}, r_{\mu}, r_{\tau})$ defined as $r_{\ell} \equiv |V_{\ell N}|^2 / |V_N|^2, \ \ell = (e, \mu, \tau)$
- Three mixed-flavour scenarios are constrained (arXiv:2207.02742) $(r_{\rm e}, r_{\mu}, r_{\tau}) = (0, 1/2, 1/2)$

 $(r_{\rm e}, r_{\mu}, r_{\tau}) = (1/2, 1/2, 0)$ $(r_e, r_{\mu}, r_{\tau}) = (1/3, 1/3, 1/3)$

Interpret:

• First limits presented for these scenarios for $1 < m_{\rm N} < 2$ GeV Anne-Mazarine Lyon

Interpretation

- 3. Finally, lower exclusion limits on $c\tau_N$ are presented for 66 different mixing scenarios for $m_N = 1, 1.5$, and 2 GeV.
- The condition $r_{\rm e}+r_{\mu}+r_{\tau}=1$ allows the values to be shown in the form of ternary plots

• First time that this type of constraints is presented for $m_{\rm N} = 1$ and 2 GeV

Summary

- A search for long-lived heavy neutral leptons has been performed at CMS in the decays of B mesons
- Possible thanks to the collection of the B-parking data set, containing $\mathcal{O}(10^{10})$ bb events
- \bullet Signal masses in the range $1 < m_{\rm N} < 3~{\rm GeV}$ were probed with unprecedented resolution
 - No significant excess over the background prediction was observed
- Interpretation Exclusion limits on $|V_N|^2$ and $c\tau_N$ were derived for various mixing scenarios and s_{ummary} for both the Majorana and Dirac hypothesis
 - $\blacktriangleright\,$ Most stringent limits to date at a collider experiment for masses $1 < m_{\rm N} < 1.7~{\rm GeV}$
 - \blacktriangleright First limits for the mixed-flavour mixing scenarios for masses $1 < m_{\rm N} < 2~{\rm GeV}$
 - The results have been published two days ago in JHEP (10.1007/JHEP06(2024)183, arXiv:2403.04584)

Summary

- A search for long-lived heavy neutral leptons has been performed at CMS in the decays of B mesons
- Possible thanks to the collection of the B-parking data set, containing $\mathcal{O}(10^{10})$ bb events
- Signal masses in the range $1 < m_{\rm N} < 3$ GeV were probed with unprecedented resolution
 - No significant excess over the background prediction was observed
- Exclusion limits on $|V_N|^2$ and $c\tau_N$ were derived for various mixing scenarios and for both the Majorana and Dirac hypothesis Summary
 - Most stringent limits to date at a collider experiment for masses $1 < m_{\rm N} < 1.7 {
 m GeV}$
 - First limits for the mixed-flavour mixing scenarios for masses $1 < m_{\rm N} < 2$ GeV
 - The results have been published two days ago in JHEP (10.1007/JHEP06(2024)183, arXiv:2403.04584)

Thank you!

Context	
Phase space	
B- parking	Backup
Process	Daonap
Strategy	
Results	
Interpretation	
Summary	
Backup	

Backup

Context

• List of systematic uncertainties

Phase space

B-

parkin

Process

Strategy

Results

Interpretatio

Summary

 Backup

Source	Value (%)
Signal shape	15
$\sigma_{B^{\pm}}^{eff}$	15
fc	24
Signal selection	5-20
Limited simulated signal sample size	<15
Matching	5
Tracking efficiency	5
Trigger scale factors	5
Muon identification scale factors	1
Electron identification scale factors	3
Total	$<\!\!42$