

Search for long-lived particles using displaced vertices and missing transverse momentum

Ang Li on behalf of the CMS collaboration

04 Jul 2024 LLP2024

Published in PRD as DOI : [10.1103/PhysRevD.109.112005](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.109.112005) arXiv: [2402.15804](https://arxiv.org/abs/2402.15804) [CMS-EXO-22-020](https://cms-results.web.cern.ch/cms-results/public-results/publications/EXO-22-020/index.html)

Motivation

- Many physics models beyond standard model predict the existence of long-lived particles (LLPs)
- The long lifetimes of LLPs create **unique signatures**
	- Displaced vertex is one of them
- The ATLAS and CMS has conducted searches for displaced vertices before
	- [The previous CMS search](https://arxiv.org/abs/2104.13474) requires energetic final states
	- [The previous ATLAS search](https://arxiv.org/abs/1710.04901) requires large LLP lifetimes
- A gap is left by previous searches with relatively soft final states and small lifetimes

Motivation

- To fill the gap, this search targets at least 1 **displaced vertex** (within beampipe) + **MET**
	- ‣ Requiring only 1 displaced vertex enhances sensitivity to displaced vertices that are challenging to reconstruct
		- Single-produced LLP
		- Wider range of *cτ*
	- ‣ MET helps exploring softer final states
- Search for signature and aim to be **model independent**
	- ‣ Different models can produce similar signatures in the detector
	- ‣ Used **split SUSY** and **gluing GMSB** samples as benchmark signal samples

Analysis Strategy

- Select events with **MET** (MET trigger + offline selection at 200GeV)
- **• Vertex reconstruction:**
	- Select well-measured and displaced tracks
	- Apply the dedicated vertex reconstruction algorithm on selected tracks
	- Select events with at least 1 vertex
- **• Machine learning:**
	- Apply the interaction network to further discriminate signal from background
- **• Background estimation:**
	- Define signal region by requiring vertex and ML output
	- Estimate background using events in control regions based on ABCD method
- Calculate **limits** based on the number of events in search regions

Vertex Reconstruction

Track selection

- This analysis uses the same vertex reconstruction algorithms as [arXiv:2104.13474](https://arxiv.org/abs/2104.13474)
- Tracks used to reconstruct displaced vertices are required to be well-measured and displaced:
	- \blacktriangleright Track $p_T > 1 GeV$
	- ‣ Have a measured hit in the innermost barrel pixel layer
	- ‣ Have measured hits in at least two pixel layers
	- ‣ Have measured hits in at least six strip tracker layers
	- \triangleright Have transverse impact parameter (d_{xy}) significance of at least 4

Vertex Reconstruction

- Fit selected tracks into vertices with **Kalman filter**
- Iteratively **merge or reallocate track** for vertices that share tracks
- **Remove tracks** that significantly changes a vertex's z position to mitigate the effect of **pileup tracks**
- **Select vertices** with quality criteria:
	- ► Be composed of at least 3 tracks ($n_{\rm track} \geq 3$)
		- $n_{\text{track}} \geq 5$ are signal-like, $n_{\text{track}} = 3$ or 4 are control regions
	- \rightarrow Be within the beam pipe radius to suppress background from material interactions
	- $\sim \sigma_{dBV} < 25$ *um*
		- To get rid of b hadron decays

Background Source

- Vertex selections remove almost all SM LLP decays
- The remaining dominating background displaced vertices result from **unrelated tracks** randomly **crossing** each other

Machine Learning

- Introduced **[Interaction](https://arxiv.org/abs/1612.00222) Network** as an **event discriminator** to
	- Increase the efficiency of selecting signal from background events
	- ‣ Perform background estimation
- Interaction Networks are a kind of **Graph Neural Network**
	- ‣ Designed to predict final states of multi-body interactions
	- ‣ Tracks are treated as single objects in the network and the "interactions" between each pair of tracks are calculated
	- ‣ Interaction Network can exploit more subtle relationships between tracks from LLPs than displaced vertex reconstruction alone
- Track information used in ML are: p_T , η , ϕ , $dx y_{BS}$, $sig(dx y_{BS})$, dz_{BS} , $sig(dz_{BS})$
- [DisCo](https://arxiv.org/abs/2007.14400) is applied to make ML output (S_{ML}) uncorrelated with $n_{\rm track}$ for background estimation

Machine Learning

- The trained Interaction Network is very powerful discriminating signal from background
	- ‣ Outstanding performance is observed for signal models with different mass splittings and $c\tau$ values
- Events with $S_{\rm ML}$ >0.2 are selected as signal-like

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 S_{ML} Data Background simulation Sim. stat. uncertainty $c\tau = 0.1$ mm, $\Delta m = 200$ GeV cτ = 10 mm, ∆m = 200 GeV cτ = 100 mm, ∆m = 200 GeV **CMS** 137 fb⁻¹ (13 TeV) $n_{\text{track}} \geq 5$ **Mass splitting=100 GeV Mass splitting=200 GeV**

Background Estimation

- Search Regions:
	- \blacktriangleright Signal region: $n_{\text{track}} \gt = 5$ and $S_{ML} > 0.2$
	- \blacktriangleright Validation region: $n_{\text{track}} = 4$ and $S_{ML} > 0.2$
	- \blacktriangleright Control regions: $n_{\text{track}} = 3$ **or** $S_{\text{ML}} < 0.2$
- A **data-driven ABCD method** is used to estimate the background
	- \cdot n_{track} and S_{ML} are the two variables that define the search regions
	- \triangleright The ABCD method requires n_{track} and S_{ML} to be decorrelated, which is achieved by applying **[DisCo](https://arxiv.org/abs/2007.14400)** technique when training the ML model

Systematic Uncertainties

- Reconstruct **two-track displaced** $\textbf{vertex of } K^0_\textup{s} \rightarrow \pi^+\pi^-$ decay
- **Artificially displace tracks** in background events to mimic LLP decays
	- ‣ **Vertex reconstruction efficiency**
	- ‣ **ML tagging efficiency**

Results and Interpretation

- Performed a maximum likelihood fit on all search regions under the background-only hypothesis
- No significant excess over the backgroundonly prediction is observed

$n_{\text{track}} = 3$	$n_{\text{track}} = 4$	$n_{\text{track}} \geq 5$	
Predicted $S_{\text{ML}} > 0.2$	- (E)	38.0 ± 6.0 (C)	5.2 ± 0.5 (A)
Observed $S_{\text{ML}} > 0.2$	203 (E)	38 (C)	9 (A)
Observed $S_{\text{ML}} < 0.2$	6327 (F)	1276 (D)	152 (B)

Results and Interpretation

- The sensitivity extends to $c\,\tau$ from 0.1 to 1000mm and Δm as low as 20GeV
	- ► Best limit achieved at *cτ* of 10mm
- For Δm of 100GeV, gluinos with mass below 1800GeV are excluded for $c\tau$ in 1-100mm
- For Δm above 50GeV, gluinos with mass below 1600GeV are excluded for $c\tau$ in 1-30mm
- Most stringent limit to date

Results and Interpretation

- Achieves the upper limit of O(1fb) for gluinos with $c\tau$ from 0.1 to 1000mm
- Excludes gluinos with $c\tau$ in the range 0.3–100mm and masses below 2240GeV
- Most stringent limit for gluinos with $c\tau$ <6mm

Summary

- A search for long-lived particles using **displaced vertex** and **missing transverse energy** is presented
	- The first CMS search that targets one displaced vertex and missing traverse energy
	- ‣ Customized **vertex reconstruction** is used to reconstruct the displaced vertex
	- **Machine learning** algorithm is applied to discriminate signal from background
	- ‣ A **data-driven background estimation** based on vertex reconstruction and machine learning is developed
	- ‣ **World leading sensitivity** is achieved for the split SUSY and gluing GMSB benchmark models

Thanks!

Backup

Machine Learning

- Interaction Network is very **computationally expensive** so only the leading 50 tracks in the event without displacement requirement are fed into ML
- Data and background simulation are mixed together as **background** for training
- Different mass points and lifetimes of signal samples are mixed as **signal** for training
- Training and testing events are selected to be **orthogonal** to avoid bias
	- Training and testing selections are shown in the table below
- **DisCo** is applied to make S_{ML} uncorrelated with n_{track} for background estimation

Machine Learning

- The decorrelation effect for background is studied
- Categorize background MC events based on $S_{\rm ML}$:
	- $\sim 0 < S_{ML} < 0.2$
	- $\sim 0.2 < S_{\text{ML}} < 0.6$
	- $\sim 0.6 < S_{ML} < 1.0$
- n_{track} distributions are consistent for different categories
- $n_{\rm track}$ and $S_{\rm ML}$ are not correlated

Analysis Selection

- ❖ Analysis Selection:
	- **EXECT Trigger and filters**
	- \blacktriangleright $E_T^{miss} > 200 \ GeV$
	- ‣ Has at least 1 displaced vertex that satisfies:
		- Be composed of at least 3 tracks
		- ^o σ _{*dBV}* < 25*um*</sub>
		- Within beam pipe
- ❖ Search Regions:
	- \blacktriangleright Signal region: $n_{\text{track}} \gt = 5$ and $S_{ML} > 0.2$
	- Validation region: $n_{\text{track}} = 4$ and $S_{ML} > 0.2$
	- \blacktriangleright Control regions: $n_{\text{track}} = 3$ **or** $S_{\text{ML}} < 0.2$

Signal Efficiency Track reconstruction efficiency

- Reconstruct **two-track displaced vertex** of $K^0_s \rightarrow \pi^+\pi^-$ decay
- Compare the d_{BV} of K^0_s vertices between data and simulation
- Each K^0_s vertex include 2 tracks
	- Failing to reconstruct one track \rightarrow failure of reconstructing the $K^0_{\rm s}$ vertex
	- \blacktriangleright K^0_s reconstruction efficiency \rightarrow track reconstruction efficiency
- Data and simulation agree within 2% in all $d_{\rm BV}$ bins
- Track reconstruction efficiency \rightarrow systematic uncertainty

Signal Efficiency Artificially Displaced Vertices

- Make **artificially displaced vertices** to study:
	- ‣ **Vertex reconstruction efficiency**
	- ‣ **ML tagging efficiency**
- Artificially displace tracks in background events to mimic LLP decays
- **Procedure**:
	- ‣ Move jets away from their original positions
	- ‣ Move direction is determined by the vector sum of the momentum of moved jets with a smearing on the angle
	- ‣ Certain jet variables and transverse LLP travel distance are reweighted to better mimic the signal signature

Signal Efficiency

• **Vertex reconstruction efficiency** is calculated as:

 $eff =$ *Nreconstructed vertices Nall artificial vertices*

- The efficiency increases with $c\tau$ and reaches a plateau after 10mm
- Data/simulation ratio stays around 85% for different *cτ*
- The data/simulation ratio is used to
	- Calibrate the vertex reconstruction efficiency
	- ‣ Calculate systematic uncertainty

Signal Efficiency

• **ML tagging efficiency** is calculated as

$$
eff = \frac{N_{S_{ML} > 0.2}}{N_{all events}}
$$

- ML recognizes most of the events as signal → model independence
- The data/simulation ratios are close to one for different *cτ*
- The data/simulation ratio are used to calculate systematic uncertainty

