

Exploring long-lived particles decaying into Displaced Dimuons at \sqrt{s} = 13.6 TeV : Innovative Triggers for Enhanced Sensitivity at the **CMS** Experiment

Published in JHEP DOI: https://doi.org/10.1007/JHEP05(2024)047 arXiv : 2402.14491 CMS-EX0-23-014

LLP2024

Mangesh Sonawane

On behalf of the CMS Collaboration

Particles and Interactions

P 33693

04.07.2024

Introduction - Long Lived Particles

Several theories have been proposed to explain the incompleteness of the SM - Beyond Standard Model **(BSM)** theories

• Examples : Supersymmetry **(SUSY)**, Weakly Interacting Massive Particles **(WIMPs)**

From searches at colliders and other experiments : Everything is so far consistent with Standard Model predictions

However there could still be interesting signatures that could be accessible, but we haven't yet probed extensively!

 \Rightarrow Long lived particles!

CMS

ÖSTERREICHISCHE

Secondary dimuon vertex displaced from the proton-proton collision point by up to several meters.

Mangesh Sonawane | LLP2024

i.e. Displaced Dimuons

Search for Displaced Dimuons in Run 3

- X Muon signatures allow utilization of the largest part of detector volume.
- X Two types of muons based on reconstruction : STA (Standalone) and TMS (Tracker + Muon System)
 - X Gives three complementary and exclusive categories : STA-STA, TMS-TMS, STA-TMS
- First direct search for BSM with LHC Run 3 data^[1]: significant improvements over previous (Run 2) results!^[2]

Signal models

Two models used as benchmark to interpret results

Hidden Abelian Higgs Model ^[3]: $H \rightarrow Z_D Z_D$, $Z_D \rightarrow \mu^+ \mu^-$

- Dark Higgs (H_D) mixes with SM Higgs (h) via κ
- ϵ controls dark photon (Z_D) lifetime : $c\tau_{ZD} \sim \epsilon^{-2}$

RPV SUSY Model [4] :

- Non-zero RPV couplings $\lambda_{_{122}and}\lambda_{_{122}}$ enable non-resonant long lived neutralino decay.
 - $ilde{\chi}^0_1 o \mu \mu
 u$

 \overline{q}

04-07-2024

Trigger Strategy

Lessons from the Run 2 analysis :

- ★ For very displaced muons, beamspot constraint @L1 underestimated pT → trigger inefficiency.
- \times High p_T thresholds at the HLT
- × HLT use muon system based reconstruction, did not require tracker information

New Triggers developed at L1 and HLT

L1 : new track finding algorithms for displaced muons

Fitted

track

× HLT :

- **X** Lower p_T thresholds : 23 GeV \rightarrow 10 GeV
- **Muon d_n thresholds** : suppress prompt muons
- Utilize tracker information : higher precision, able to reject prompt muons.

True track

Trigger Performance in BSM Signal

× Efficiency in **signal** increased by a factor **2x to 4x**!

04-07-2024

Mangesh Sonawane | LLP2024

CMS-EX0-23-014

Trigger : Prompt Background Rejection

- **×** Efficiency in **signal** increased by a factor **2x to 4x**!
- × Performance in data :
 - **Drell-Yan** : prompt dimuons
 - rejection factor of 2000 :

Makes trigger rate acceptable

Vertex Efficiency in the CMS Detector

- **X** Typical vertex efficiency in the **TMS-TMS** and **STA-STA** categories, in all HAHM signal samples combined.
 - X In TMS-TMS, efficient upto ~60 cm from tracker muons
 - In STA-STA, efficient up to ~400 cm in vertex L_{xy} and ~600 cm in Izl from standalone muons in detector acceptance!

Offline analysis : Key Observables

Powerful handles to distinguish signal from background

- Muon Track/Dimuon Vertex quality (fit χ^2)
- STA to TMS association.
- Displacement : $L_{xy} / \sigma(L_{xy})$, $d_0 / \sigma(d_0)$
- Kinematics :
 - $\mathsf{p}_{\mathsf{T}}^{\ \mu}$, $\alpha_{\mu\mu}$, Collinearity | $\Delta \Phi$ |
- Muon direction
- Timing
- Charge (OS/SS)
- Invariant mass : $m_{\mu\mu} > 10 \text{ GeV}$
- TMS muon isolation

Offline analysis : Key Observables

Powerful handles to distinguish signal from background

- Muon Track/Dimuon Vertex quality (fit χ^2)
- STA to TMS association.
- Displacement : $L_{xy} / \sigma(L_{xy})$, $d_0 / \sigma(d_0)$
- Kinematics :
 - \circ p_T^μ, α_{μμ}, Collinearity ΙΔΦΙ
- Muon direction
- Timing
- Charge (OS/SS)
- Invariant mass : $m_{\mu\mu} > 10$ GeV
- TMS muon isolation

New in Run 3

- Corrected mass for non-resonant dimuon vertices : $m_{\mu\mu}^{\text{corr}} = \sqrt{m_{\mu\mu}^2 + p_{\mu\mu}^2 \sin^2 \theta} + p_{\mu\mu} \sin \theta$,
- STA muon isolation

04-07-2024

Backgrounds

- Signal region designed to have low to none SM backgrounds for optimal signal discovery significance
 - Misidentification or mis-reconstruction of muons can cause background events to enter the signal region.
- **X** Backgrounds may be **symmetric** or **asymmetric** in Collinearity $\Delta \Phi$.
 - X This depends on whether the $p_T^{\mu\mu}$ and L_{xy} vectors point in the same direction (correlated) or not.

Symmetric

- Symmetrically distributed around $\pi/2$
- Occurs when $p_T^{\mu\mu}$ and Lxy vectors are uncorrelated
 - Mismeasured (prompt) Drell-Yan (DY), dibosons,
 - Cosmic ray muons
 - Unrelated jets, W+jets

Asymmetric

- Signal like, peaks at zero
- Occurs for QCD processes
 - Mismeasured low-mass resonances (e.g. J/ ψ)
 - Cascade decays resulting in 2+ muons
 (e.g. from B mesons)

04-07-2024

Backgrounds : $\Delta \Phi$ symmetric

Backgrounds estimated using the ABCD method, measured in CRs adjacent to SR :

 $N_{SR}^{A} = N_{B} * (N_{C}/N_{D})$

- **X** For $\Delta \Phi$ symmetric backgrounds (e.g. DY) :
 - Signal expected to have small $\Delta \Phi$

Backgrounds : $\Delta \Phi$ asymmetric

Backgrounds estimated using the ABCD method, measured in CRs adjacent to SR :

 $N_{SR}^{A} = N_{B} * (N_{C}/N_{D})$

- **×** For $\Delta \Phi$ asymmetric backgrounds (e.g. QCD) :
 - Signal expected to have **Opposite Sign** and **isolated muons**

Results - Dark Photon model

X

X

X

Results - RPV SUSY model

- **×** Features **non-resonant dimuon production**
 - **Corrected mass** to account for neutrino: minimum mass of secondary vertex consistent with direction of the LLP $m_{\mu\mu}^{\text{corr}} = \sqrt{m_{\mu\mu}^2 + p_{\mu\mu}^2 \sin^2 \theta} + p_{\mu\mu} \sin \theta,$

Observed

 $6 < \min(d_o/\sigma_d) < 10$

 10^{2}

2×10²

 10^{3}

Mangesh Sonawane | LLP2024

TMS-TMS further divided into SRs based on muon d₀
 Best sensitivity in most displaced SR

.a 40

Events 30

> 25 20 15

Observed number of events consistent with predictions.

CMS

TMS-TMS

 $|\Delta \Phi| < \pi/4$

20 30

CMS-EX0-23-014

INSTITUT FÜR HOCHENERGIERHYS

Particles and Interactions

CMS

ÖSTERREICHISCHE AKADEMIE DER

No excesses

observed.

Results - Limits

Results used to set upper limits on model parameters :

- For the Dark Photon model : X
 - Limits set on B(H \rightarrow Z_nZ_n)
 - Run 3 (2022 only) limits **comparable or better** than full Run 2 with only 40% as much luminosity! $(36.6 \text{ fb}^{-1} \text{ vs} 97.6 \text{ fb}^{-1})$
 - **Combined** Run 2 + Run 3 limits **stronger by factor 2**

CMS-EX0-23-014

04-07-2024

Results - Limits

Results used to set upper limits on model parameters :

- × For the RPV SUSY model
 - Limits set on $\sigma(\widetilde{qq})B(\widetilde{q} \rightarrow q\widetilde{\chi}_1^0)$
 - Limits on σ(qq) significantly stronger than previous
 CMS (Run 1) limits
 - Stronger limits than ATLAS for $c\tau \leq 1 \text{ cm}$ and $c\tau \geq 1 \text{ m}$

04-07-2024

<u>CMS-EX0-23-014</u>

Comparison to other LLP searches : $H \rightarrow XX$

Best constraints to date in B(H \rightarrow XX) in broad range of $c\tau$ (X) for m(X) > 10 GeV

Reinterpretation material in HEPData

- \times We provide signal efficiencies as a function of the minimum p_T and d_0 of the two muons to aid reinterpretation efforts.
 - \times Efficiencies provided separately for HAHM and RPV SUSY, in each category, and for different L_{xv} ranges.

L_{xy}^{gen} < 20 cm $70 \text{ cm} < L_{xv}^{gen} < 500 \text{ cm}$ STA-STA TMS-TMS HAHM signal **CMS** Supplementary **CMS** *Supplementary* 2022 2022 Efficiency 9.0 Efficiency 9.0 min(d₀) [cm] min(d₀) [cm] 0.08 0.12 0.19 0.19 0.16 0.24 0.28 0.24 0.15 0.11 0.01 0.04 0.10 0.00 0.17 0.25 0.29 0.25 0.16 0.4 0.4 0.06 0.13 0.19 0.21 0.14 0.21 0.28 0.24 0.14 0.28 0.35 0.39 0.17 0.40 0.08 0.13 0.18 0.17 0.13 0.3 0.3 0.27 0.51 0.52 0.48 0.05 0.09 0.13 0.10 0.07 0.2 0.2 0.29 0.50 0.52 0.05 0.10 0.10 0.09 0.03 All maps available on the 0.27 0.49 0.51 0.37 0.1 0.05 0.07 0.09 0.08 0.00 0.1 HEPData page <u>here</u> 0.18 0.30 0.39 0.39 0.29 0.06 0.10 0.11 0.12 0.08 0.0 0.0 [50.00, 100.00] [100.00, 1000.00] [10.00, 20.00] [20.00, 30.00] [30.00, 50.00] [10.00, 20.00] [20.00, 30.00] [30.00, 50.00] [50.00, 100.00] [100.00, 1000.00] min(p_T) [GeV] min(p_T) [GeV]

Inviting feedback from our colleagues!

Summary

Innovation in trigger strategy allowed CMS to explore new BSM territory already with data from the first year of LHC Run 3 : **First search for new physics at 13.6 TeV**, with 36.6 fb⁻¹ of data collected in 2022.

- X Improves upon previous Run 2 search by a **factor 2x to 4x sensitivity gain driven by new triggers**
 - X At L1 Trigger : new algorithms implemented for displaced dimuons
 - \times At HLT : new dimuon paths with lower p_T , and displacement thresholds to reject prompt muons
- × No excesses observed.
- **Limits comparable or better than Run 2** with despite only modest integrated luminosity.
- × Results combined with Run 2 data for Dark Photon model
 - **Best constraints to date** to $B(H \rightarrow Z_D Z_D)$ in broad range of $c_T(Z_D)$ for **m(Z_D) > 10 GeV**
- Significant improvements in constraints to $\sigma(\overline{q}\overline{q})$ in RPV SUSY

Published in <u>JHEP</u>, also available on <u>arXiv : 2402.14491</u>

Reinterpretation material provided on HEPData : <u>https://www.hepdata.net/record/ins2760892</u> We welcome your feedback! <u>mangesh.sonawane@cern.ch</u>

References

- 1. CMS Collaboration, "Search for long-lived particles decaying to a pair of muons in pp collisions at √s=13.6 TeV with 2022 data", <u>https://cds.cern.ch/record/2889915</u>
- 2. CMS Collaboration, "Search for long-lived particles decaying to a pair of muons in proton-proton collisions at $\sqrt{s} = 13$ TeV", <u>http://dx.doi.org/10.1007/JHEP05(2023)228</u>
- 3. Curtin et al., "Illuminating dark photons with high-energy colliders", <u>https://doi.org/10.1007/JHEP02(2015)157</u>
- 4. R. Barbier et al., "R-parity-violating supersymmetry", <u>http://dx.doi.org/10.1016/j.physrep.2005.08.006</u>

Backup

Event Display

Signal models

Signal samples - grid

04-07-2024

Full Run 2 event selection

Event selection			
N(PV)	>1		
HLT-STA muon matching	Ves		
N(nearly parallel STA muons)	<4		
Muon selection	Muon type		
	STA	TMS	
STA-to-TMS muon association	not matched to TMS μ	matched to STA μ	
N(CSC+DT hits)	>12		
- associated STA muon		>12	
N(DT hits) for muons in barrel	>18		
tracker muon	_	ves	
N(matched muon segments)	-	>1	
Dr.	>10 GeV	>10GeV	
σ_{r} / p_{r}	<1.0	<1.0	
v ² , /dof	<25		
Jrel	~~~	<0.075	
trk	1200	20.075	
much direction	incide out	17	
d / -	Inside-out	2 -1	
u_0 / v_{d_0}		20	
Dimuon selection	Dimuon category		
	STA-STA	STA-TMS	TMS-TMS
DCA	<15 cm	<15 cm	<15 cm
pairing criteria	best 1–2 ranked dimuons selected		
1 X ²	<10	<20	<10
ΔN (pixel hits)	Nr -		<3
N(hits before vertex)	_	<6	<3
$N(\text{tracker layers}) + \text{floor}(L_{m}, \text{[cm]}/15)$		>5	>5
Id TMS		<2.9	
COR #			
- 2016 data analysis	>-0.8	>-0.8	>-08
2018 data analysis	5-09	-0.0	-0.99
N(dimuon sogmonts)	>4	2-0.5	>-0.99
if Am < 0.1	/4	0.00	1000
$ \Pi \Delta \eta_{\mu\mu} < 0.1$			
- IV (dimuon segments)	>5		_
- N(DT hits) for muons in barrel	>24		_
no back-to-back muon			
with $ \Delta t_{b2b} > 20 \text{ ns}$	yes		
$m_{\mu\mu}$	>10 GeV	>10 GeV	>10 GeV
p_T of the leading muon			> 25 GeV
$L_{xy}/\sigma_{L_{xy}}$	>6	>3	>6
$ \Delta \Phi $	$<\pi/4$	$<\pi/4$	$<\pi/4$
opposite sign muons	Vos	Vos	Vos

Mangesh Sonawane | LLP2024

ÖSTERREICHISCHE AKADEMIE DER WISSENSCHAFTEN

Run 3 event selection

	Event Selection		
Requirement	Dimuon Category		Requirement
	STA-STA	TMS-TMS	
Good primary vertex	yes	yes	DCA
HLT-RECO matching	yes	yes	Convergent
N(parallel pairs)	< 6	< 6	Pairing crite
	Muon Selection		$\chi^2_{ m vertex}$ $\Delta N({ m pixel hi})$
Requirement	Muon Type		N (hits befor
	STA	TMS	$\sigma(L_{xy})$
STA to TMS muon association	not matched to TMS μ	matched to STA μ	$\cos \alpha$
N(CSC + DT hits)	> 12	> 12 (assoc. STA muon)	Back-to-back
N(DT hits) for muon in barrel	> 18	-	N (dimuon s
Tracker muon	-	yes	If $ \Delta \eta_{\mu\mu} < 0$
N(matched muon segments)	-	> 1	$\cdot N(du)$
p_T	$> 10 { m GeV}$	$> 10 { m GeV}$	$\cdot N(\mathbf{D})$
$\sigma(p_T)/p_T$	< 1.0	< 1.0	$m_{\mu\mu}$
$\chi^2_{ m track}/ m dof$	< 2.5	-	Leading much
I^{rel}	$< 0.15^{*}$	< 0.075	$L_{xy}/O(L_{xy})$ Muon sign c
$ t_{\text{in-out}} $	< 12 ns	-	$ \Delta \Phi $ for H.
Muon direction	+1 ('inside-out')	-	$ \Delta \Phi $ for \tilde{a} –
$d_0/\sigma(d_0)$	-	> 6	$m m^{corr}$ in

Dimuon Selection					
Requirement	Dimuon Category				
	STA-STA	TMS-TMS			
DCA	$< 15 \mathrm{~cm}$	$< 15 \mathrm{~cm}$			
Convergent common vertex fix	yes	yes			
Pairing criteria	Select best 1-2 dimuons ranked by min($\Sigma \chi^2_{\rm vertex}/{\rm dof}$)				
$\chi^2_{ m vertex}$	< 10	< 10			
ΔN (pixel hits)	-	< 3			
N(hits before vertex $)$	-	Not applied*			
$\sigma(L_{xy})$	$< 20 \text{ cm}^*$	-			
$\cos \alpha$	> -0.9	- 0.99			
Back-to-back muon timing, $ \Delta t_{b2b} $	> 20 ns	-			
N(dimuon segments)	> 4	-			
If $ \Delta \eta_{\mu\mu} < 0.1$					
$\cdot N(\text{dimuon segments})$	> 5	-			
$\cdot N(\text{DT hits})$ for muons in barrel	> 24	-			
$m_{\mu\mu}$	$> 10 { m ~GeV}$	$> 10 { m GeV}$			
Leading muon p_T	-	> 25 GeV			
$L_{xy}/\sigma(L_{xy})$	> 6	> 6			
Muon sign correlation	opposite-sign (OS)				
$ \Delta \Phi $ for $H \to Z_D Z_D$ (HAHM)*	$< \pi/10^{*}$	$< \pi/30^{*}$			
$ \Delta \Phi $ for $\tilde{q} \to q \tilde{\chi}_1^0$ (RPV SUSY)*	$< \pi/4^{*}$	$<\pi/4^*$			
$m_{\mu\mu}, m_{\mu\mu}^{\rm corr}$ intervals*	See Section 6.6*				

$|\Delta \Phi|$ distributions

Signal Efficiency vs Z_n mass

Signal Efficiency in detector

Signal Efficiency - Gain

Validation of bg prediction : STA-STA

Validation of bg prediction : TMS-TMS

Validation of bg prediction : TMS-TMS

TMS-TMS signal region

04-07-2024

Dark Photon Limits - Categorywise

Dark Photon Limits - Run 2 and 3

04-07-2024

RPV SUSY limits - Comparison

42

ÖSTERREICHISCHE AKADEMIE DER

WISSENSCHAFTER