

SUB-Millicharge ExperimenT (SUBMET) Search for sub-millicharged particles at J-PARC

Hoyong Jeong (Korea University) on behalf of the SUBMET collaboration

July 1st 2024

LLP2024: Fourteenth workshop of the Long-Lived Particle Community

Motivation

$$\begin{split} \mathcal{L}_{\text{dark sector}} &= -\frac{1}{4} A'_{\mu\nu} A'^{\mu\nu} + i \bar{\chi} (\not\!\!\!\partial + i e' \not\!\!A' + i M_{\text{mCP}}) \chi - \frac{\kappa}{2} A'_{\mu\nu} B^{\mu\nu} \\ \mathcal{L} &= \mathcal{L}_{\text{SM}} - \frac{1}{4} A'_{\mu\nu} A'^{\mu\nu} + i \bar{\chi} (\not\!\!\partial + i e' \not\!\!A' + i \kappa e' \not\!\!B + i M_{\text{mCP}}) \chi \end{split}$$

New fermion (χ) can have a small EM charge: milli-charged particle.

"Kinetic mixing with a new massless 'dark' boson **can provide the link between SM and a hidden/dark sector**." (Holdom, 1985)

July 1st 2024

Largely yet unexplored region: $Q < 2 \times 10^{-4} e$ and $Q < 10^{-3} e$, $m_{\gamma} > 0.1 \, {
m GeV/c^2}$ Scintillator-based detector using proton fixed-target collisions at J-PARC (inspired by milliQan experiment)

July 1st 2024

From https://j-parc.jp/c/en/about/outline.html

July 1st 2024

From https://j-parc.jp/c/en/about/outline.html

July 1st 2024

From https://j-parc.jp/c/en/about/outline.html

1 m × 4 m at B2 is secured for the experiment.

July 1st 2024

Basic Idea of χ **Detection**

July 1st 2024

Basic Idea of χ Detection

- ➢ Hadrons stop in the Beam Dump.
- ➢ Muons lose the entire energy in sand (5 MeV/cm) before reaching NM building.
- → χ s reach the detector. (Energy loss for χ s with $q = 10^{-3}e$ is < 0.1 MeV.)

July 1st 2024

Backgrounds

PMT dark current and external radiation (major): Measured in the lab and at the experimental site

Beam-induced backgrounds: Expected to be minor **Cosmic backgrounds**: Negligible based on GEANT4 simulation

In the estimation of background, use 1.3 μ s (0.16 μ s × 8 bunches) per spill as a signal region

• χ s travel at $\sim c$, so 2σ of the bunch width (160 ns) should capture most of them

Assume that data-taking period/year is 4 months; live time is ~ 50 sec for 3 years

July 1st 2024

- Use long (1.5 m) scintillator bars
 so that χs with small charge can
 produce photons
- For small ϵ , detect single photons

- Use long (1.5 m) scintillator bars
 so that χs with small charge can
 produce photons
- For small ϵ , detect single photons
- Stack (10 × 8) scintillators to increase total volume
- Use two layers to control

backgrounds

Use long (1.5 m) scintillator bars
 so that χs with small charge can
 produce photons

13

- For small ϵ , detect single photons
- Stack (10 × 8) scintillators to increase total volume
- Use two layers to control backgrounds
- Align the two layers such that a goes through them

Readout

Trigger board × 1

Sensitive and fast enough to detect single photo-electric (SPE) signal (~ 50 mV, ~ 20 ns)

DAQ: Custom **DRS4**-based readout systems

July 1st 2024

1,000 kg 2,450 pieces 160 modules (PMTs + Scints) 2 racks 10 readout boards 1 trigger boards 1 DAQ server **10 HV splitters** 1 HV supply 160 signal cables (total length 1.2 km) 160 HV cables (total length 1.2 km) 72 HV short cables (total length 0.2 km) Full system test in Korea, before going to J-PARC. (April 2024)

- Run configuration
- 10 Hz external periodic triggering
- 12 hours = 432,000 triggered events
- 1300 V applied to all modules
- All 160 channels on
- Cosmic track selection
- Pulses in a same time window
- Pulse height more than 0.56 V
- At least 7 hits in a row
- Result
- 279 events detected

Hoyong Jeong, LLP2024

July 1st 2024

17

Cosmic Event Visualization

(Color scale: 17 V·ns to 68 V·ns in pulse area)

July 1st 2024

More Events

July 1st 2024

Installation Photos in J-PARC

July 1st 2024

History of SUBMET

Letter of Intent: Search for sub-millicharged particles at J-PARC

Suyong Choi¹, Jeong Hwa Kim¹, Eunil Won¹, Jae Hyeok Yoo¹, Matthew Citron², David Stuart², Christopher S. Hill³, Andy Haas⁴, Jihad Sahili⁵, Haitham Zaraket⁵, A. De Roeck⁶, and Martin Gastal⁶

¹Korea University, Seoul, Korea
 ²University of California, Santa Barbara, California, USA
 ³The Ohio State University, Columbus, Ohio, USA
 ⁴New York University, New York, New York, USA
 ⁵Lebanese University, Hadeth-Beirut, Lebanon
 ⁶CERN, Geneva, Switzerland

We propose a new experiment sensitive to the detection of millicharged particles produced at the 30 GeV proton fixed-target collisions at J-PARC. The potential site for the experiment is B2 of the Neutrino Monitor building, 280 m away from the target. With N_{POT} = 10^{22} , the experiment can provide sensitivity to particles with electric charge $3 \times 10^{-4} e$ for mass less than 0.2 GeV/c² and $1.5 \times 10^{-3} e$ for mass less than 1.6 GeV/c². This brings a substantial extension to the current constraints on the charge and the mass of such particles.

Abstract

Proposal: Search for sub-millicharged particles at J-PARC SUB-Millicharge ExperimenT (SUBMET) Sungwoong Cho¹, Suyong Choi¹, Jeong Hwa Kim¹, Eunil Won⁴, Jae Hyeok Yoo¹, Claudio Campagnari², Matthew Citron², David Stuart², Christopher S. Hill³, Andy Haas⁴, Jihad Sahili⁵, Haitham Zaraket⁵, A. De Roeck⁶, and Martin Gastal⁶ ¹Korea University, Seoul, Korea ²University of California, Santa Barbara, California, USA ³The Ohio State University, Columbus, Ohio, USA ⁴New York University, New York, New York, USA ⁵Lebanese University, Hadeth-Beirut, Lebanon CERN, Geneva, Switzerland Abstract riment searching for sub-millicharged particles (χ s) using 30 GeV ed-target collisions at J-PARC. The detector is composed of two layers of stacked bars and PMTs and is proposed to be installed 280 m from the target. The scintilla main background is a random coincidence between two layers due to dark counts in PMTs which can be reduced to a negligible level using the timing of the proton beam. With $N_{\rm POT} = 5 \times 10^{21}$ which corresponds to running the experiment for three years, the experiment provides sensitivity to χ s with the charge down to $6 \times 10^{-5}e$ in $m_{\chi} < 0.2 \text{ GeV}/c^2$ and $10^{-3}e$ in $m_{\chi} < 1.6 \text{ GeV}/c^2$. This is the regime largely uncovered by the previous experiments

Technical Design Report E83: Search for sub-millicharged particles at J-PARC **SUB-Millicharge ExperimenT (SUBMET)** Sungwoong Cho¹, Suyong Choi¹, Seokju Chung⁴, Hoyong Jeong¹, Hyunki Moon¹, Eunil Won¹, Jae Hyeok Yoo¹, Matthew Citron², Claudio Campagnari³, Jeong Hwa Kim³, Ryan Schmitz³, David Stuart³, Christopher S. Hill⁴, Andy Haas⁵, Ayman Youssef⁶, Ahmad Zaraket⁶, Haitham Zaraket⁶, A. De Rocck⁷, and Martin Gastal⁷ ¹Korea University, Seoul, Korea ²University of California, Davis, California, USA ³University of California, Santa Barbara, California, USA ⁴The Ohio State University, Columbus, Ohio, USA ⁵New York University, New York, New York, USA ⁶Lebanese University, Hadeth-Beirut, Lebanon ⁷CERN, Geneva, Switzerland

This Year,

NOW 6/4 ~

Mar 2024	Apr 2024	May 2024	Jun 2024
Finalize detector R&D,	Full system test in Korea,	Installation,	Data taking
fabrication	Shipping to Japan	Commissioning	

July 1st 2024

J-PARC ν Beam Operation In June

Data-taking result

- Full system working w/o problem
- 4th ~ 28th in June ~ 4th in July
- ~ 900k triggered events
- Live time ~ 4 sec
- About 8% of goal statistics

Data analyzed soon. Stay Tuned!

July 1st 2024

Photo from SUBMET Kick-off Meeting on May 30th 2024 (link)

July 1st 2024

Backup

July 1st 2024

The Team

Sungwoong Cho Suyong Choi Hoyong Jeong Hyunki Moon Changhyun Seo Eunil Won Jae Hyeok Yoo

Claudio Campagnari Jeong Hwa Kim David Stuart Ryan Schmitz Matthew Citron Juan Salvador Tafoya Vargas*

UNIVERSITY OF CALIFORNIA

Christopher S. Hill Collin Zheng* Ryan De Los Santos*

Jihad Sahili Ayman Youssef Ahmad Zaraket Haitham Zaraket

Albert De Roeck Martin Gastal

July 1st 2024

Hoyong Jeong, LLP2024

* Special thanks

Optimization of Module Design

- ➤ Width of the scintillator bars (50 mm × 50 mm) determined by the size of the PMTs
- Length of the scintillator bars determined by spatial constraint and GEANT4 study
 - Due to spatial constraint, the max allowed length is about 1500 mm
 - Count the number of photons (N_γ) produced by a through-going muon as a function of bar length
 - Not much increase above 1500 mm, so 1500 mm has been chosen as the bar length

Cosmic Background

 ≤ 5

0.022

0.034

- Muons going through SUBMET can be tagged/rejected by panels
- They can interact with the material around the $\mathbf{\lambda}$ detector and generate shower of particles including low energy photons
 - If they hit two layers at the same time, they can mimic the signature of a χ
- Performed GEANT4 simulation to estimate this contribution
 - Used rate on the surface $(1 / \text{cm}^2 \cdot \text{min})$, generated 12 m × 12 m grid of muons, number of muons corresponds to data taking for 20 years
- As the table shows, predictions is < 0. 1 for 3 years

July 1st 2024

Detector components: Supermodule

July 1st 2024

Test on the Mechanics

Checked stress and safety factor in FEM analysis

- Maximum stress: 200 MPa
 - Minimum safety factor: 17.49

July 1st 2024

DAQ Electronics Diagram

July 1st 2024

HV Supply Monitoring

	CAEN CAEN		HEAD		CAEH			Seco	Desct First R and Row:	tiprion tow: ID Target Vo	ltage						Po Red Greer	wer : ON n: OFF							Sta Scarl Blue:	itus et: UP DOWN			
8				30	0 •	0_0	0_1	0_2	0_3	0_4	0_5	0_6	0_7	0_8	0_9	0_10	0_11	0_12	0_13	0_14	0_15	0_16	0_17	0_18	0_19	0_20	0_21	0_22	0_23
					Q	1000	0	10	10	0	1000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
						20	2_1	2_2	2_3	2_4	2_5	2_6	2_7	2_8	2_9	2_10	2_11	2_12	2_13	2_14	2_15	2_16	2_17	2_18	2_19	2_20	2_21	2_22	2_23
<u>ی چ</u>						1450	1450	1450	1300	1450	1450	1450	1450	1450	1450	1450	1450	1450	1450	1450	1450	1450	1450	1450	1450	1450	1450	1450	1450
			0		0	4_0	4_1	4_2	4_3	4_4	4_5	4_6	4_7	4_8	4_9	4_10	4_11	4_12	4_13	4_14	4_15	4_16	4_17	4_18	4_19	4_20	4_21	4_22	4_23
			<u>ک</u> ۱		0	3	4	5	6	7	0	0	0	100	2000	300	4	5	6	0	0	0	0	0	0	0	0	0	0
6			6								Vm	on2												on2					(ant)
6		0			0											VM VM VM	en2_0 0 V en2_1 0 V en2_2 0 V											- Mi	902,0 0 mA 902,3 0 mA 902,2 0 mA
	Asset Hand		24CH MED 3.5KV 1.5KV		BICH NED SIGH NED SIGN												on2_3 0 V on2_4 0 V on2_5 0 V											- Mo - Mo - Mo	912_3 0 mA 912_4 0 mA 912_5 0 mA
0	6	() (C) () () () () () () () () () () () () ()			E a											- VM - VM - VM	on2_6 0 V on2_7 0 V on2_8 0 V	1 mA										- Mc - Mc - Mc	912,6 0 mA 912,7 0 mA 912,8 0 mA
8	-			иньпл	ייר	1.40 kV	Į.	h i	1	rini.	I F	111		п		- VM - VM	on2_9 0.V on2_10 0.V											- Mo	2.5 0 mA
CAEN	•	bio 👫														- VM - VM	an2_12 0 V an2_13 0 V	700 µA 600 µA										= M.0	sn2_12 0 mA sn2_13 0 mA
A.q. 2	•	•			· ·											- VM - VM - VM	on2_14 0 V on2_15 0 V on2_16 0 V	500 µA 400 µA										- Mc - Mc	912_34 0 mA 912_35 0 mA 912_36 0 mA
CTALL CTALL				: (0	600 V 400 V										= VM - VM	on2_17 0 V on2_18 0 V			1 1			Г	111	L L	П		- Ma - Ma	912_37 0 mA 912_38 0 mA
				.°V	E											- VM - VM	on2_19 0 V on2_20 0 V	200 µA 100 µA										- Mc	212,19 0 mA 212,20 0 mA
R 1					2	0 V	10/15 10/17	10/19 10/2	1 10/23 10	125 10/27	0/29 10/31	11/02 11/04	11/06 11/0	11/10 11	12 11/14		on2_22 0 V on2_23 0 V	0 mA	10/15 10/17	10/19 000	1 10/23 10	(25 10/27	10/29 10/33	11/02 11/04	11/06 11/0	11/00 -11	12 11/14	- Mo	m2,22 0 mA m2_23 0 mA
					00	1000		100.00	100		(and)		100 100	1010	14.14			100.00		(1) PR (1) 4	100	NULL INCOME			1000	10,000,000	14,12		

▲ Web controller panel

- ➤ The voltage and current of individual channels are plotted in real-time through online.
- The numerical value of the target voltage and the channel state are combined into the upper panel, being indicated with a color palette.

July 1st 2024

Background Measurement

July 1st 2024

- Radiation from the structures of the building can generate pulses that are indistinguishable from the pulses due to χs
- Since the condition of such radiation strongly
 depends on the environment, we measured the rate
 at the detector site
- ➤ Pair of modules shielded by other scintillators
- Recorded total of 12M events,
 corresponding to ~63 s of live time
 (data taking for 4 years)

Background Measurement

> Applied following cuts to select events

- Pulse height : 5.8 mV < Vpulse < 30 mV
- Pulse width : $\Delta t_{width} < 7$ ns
- Remove events with a large number of afterpulses: Npulse < 3
- Coincidence time window: $\Delta t_{pulse} < 20$ ns

July 1st 2024

Hoyong Jeong, LLP2024

- > 1 background events out of 12M events
- > 1×80/4 /2 = 10 background events per year

(80 pair of modules, time ordering)

Detector Performance

- > Exclusion limit using bkg = 90 and bkg =450, $N_{POT} = 5 \times 10^{21}$
- Even with 5 times more backgrounds, only minor change in sensitivity due to rapid drop in signal acceptance.

$$(N_{signal} \propto \varepsilon^6)$$

35

July 1st 2024

Bunch Structure

July 1st 2024

SPE Pulse Finding

[Motivation] In case of fluctuating baseline, how to estimate baseline level in spite of the presence of signals?

Step 1. Calculate E_0 , σ_0

Step 2. Exclude points outside of $E_0 \pm 5\sigma_0$ and their neighbors when calculating E_1 , σ_1 . Step 3. Iterate until every points are inside of $E_n \pm 5\sigma_n$

Step 4. Series { $E_0 E_1, E_2, ...$ } may converge to pedestal level.

Step 5. Find the point that exceeds the threshold.

July 1st 2024

Raw Data Structure

- > $4,096 \times 16$ bits = 65,536 bits for each channel
 - 131,072 bytes for each board per event
 - among 16 bits, only 12 bits are used to reduce memory usage
- \succ first 2 \times 2 bytes \times 16 channels = 64 bytes are reserved for header

- data length, board id, beam spill number, triggered time, trigger count in trigger / readout board, PLL lock status

1	000000000000000000000000000000000000000	0000	0200	0166	6600	b300	5a82	ac00	0000
2	00000010:	0000	0000	b800	5a82	ac00	0000	0000	0000
3	00000020:	b200	b00c	b20c	b204	b004	b204	b204	b204
- 4	00000030:	ff 00	0000	0000	0000	0000	0000	0000	0000
5	00000040:	026e	ce6d	162e	202e	111e	051e	354e	2a4e
6	00000050:	1b6e	fd6d	1c4e	004e	193e	fd3d	213e	183e
- 7	00000060:	000e	c80d	180e	1f0e	0f0e	000e	350e	2a0e
8	00000070:	1a0e	fe0d	190e	010e	190e	fd0d	1f0e	180e
9	00000080:	010e	c60d	160e	210e	0d0e	030e	330e	290e
10	00000090:	1c0e	fb0d	190e	000e	170e	fc0d	1e0e	160e

64 bytes of header Data corresponding to t = 0, 1 are removed

32 bytes of ADC for each sampling

July 1st 2024