Dark photon lifetime: closer look at SM resonances

Ayuki Kamada (University of Warsaw)

Based on AK, Takumi Kuwahara, Shigeki Matsumoto, Yu Watanabe and Yuki Watanabe, arXiv:2404.06793

July 3, 2024 @ LLP2024

1

High-energy physics

High-energy? physics

Contents

Review of dark photon

- long-lived dark photon searches
- resonant decay though mixing with SM resonances

Closer look at mixing with SM resonances

- conventional computation of resonant decay
- caveat in large kinetic mixing

Intensity frontier

Dark photon portal \mathscr{L} ⊃ *ϵY* 2 *Yμν F*′ *μν*

- kinetic mixing between the hyper-charge gauge boson and dark photon
- SM particles feebly couple to dark photon $\mathscr{L} \supset \text{cej}_{em}^{\mu} A'_{\mu}$ $\epsilon_Y \cos \theta_W = \epsilon_Y$
- mass from dark Higgs (or Stueckelberg)

Talk by Anne-Marie Magnan

 $A' \rightarrow e^+e^-$

Lifetime frontier

LHC lifetime frontier

- HL-LHC (2027+) $\mathscr{L} = 3 ab^{-1}$
	- **Berlin and Kling, PRD, 2019** - intensity frontier as well as high-energy frontier
- FASER(2) Barrack D UXA shield
	- forward direction $\theta_{\text{det}} = 2 \times 10^{-3}$
	- r c lifetime particles come **CODEX-b** יי
! m - more boosted and thus shorter

$$
p_{\rm geo} \sim p_T/\theta_{\rm det}
$$

 $p_T/\theta_{\rm det}$ **Yuxiao Wang and Talks by Felix Kling, Motoya Nonaka**

and Erez Etzion

 \blacksquare tynical transverse momentum is determined by - typical transverse momentum is determined by the production process of long-lived particle

> L 4m

- MATHUSLA (CODEX-b) tification \mathcal{A} . In order to be able to be able to be able to reconstruct the set of \mathcal{A}

- **tr** α is α and α frequently must have precise the outer of α is a property o $\theta_{\text{det}} = 0.5$ and Erez Etzion Tracking
- dial displacement of the ² decay vertex of *r*² *<* 30 cm. rially, we can be demanded the modern tracks are such that the muon tracks are such that the muon tracks are s displaced and require a transverse impact parameter of *a* 1 mm arricles come placed muon-jets at ATLAS and CMS requires - less boosted and thus longer lifetime particles come

Intensity/lifetime frontier in visible decays in the plane mixing strength *'* versus mass *mA*Õ. The vertical red line shows the allowed range of *e* ≠ *X* couplings of a new gauge boson *X* coupled to electrons \blacksquare

Dark photon portal with Sea

- minimal dark photon model

- upper bound determined by the lifetime (should be sufficiently long-lived)
- lower bound determined by the lifetime (should decay) and production mixing strength *'* versus mass *mA*^Õ for PBC projects on a ≥ 10-15 year timescale. The - lower bound determined by the lifetime (should deca

- in the minimal dark photon model, only one parameter (kinetic mixing) for a given dark photon mass to electrons that could explain the ⁸Be anomaly [70, 71].

$$
\Gamma(A' \to \bar{f}f) \simeq \frac{1}{3} \alpha \epsilon^2 Q_f^2 m_{A'}
$$

Resonant decay through mixing

Short lifetime in a specific mass

Conventional computation

All SM resonances are relevant *10 -7*

- with the same quantum number (neutral, spin 1) *10 2*

Multiplying R-ratio by decay width to muon pair *hadrons, s*)*/‡*(*e*⁺*e*[≠] ^æ *^µ*⁺*µ*≠*, s*). *‡*(*e*⁺*e*[≠] ^æ *hadrons, s*) is the experimental cross section corrected for initial state

 $\Gamma(A' \to \text{hadrons}) = \Gamma(A' \to \bar{u}u) \times R(m^2)$ $\Gamma(A' \to \text{hadrons}) = \Gamma(A' \to \bar{\mu}\mu) \times R(m_{A'}^2)$

prediction, and the solid one (red) is 3-loop pQCD prediction (see "Quantum Chromodynamics" section of this - misses non-hadronic resonances like true muonium (later) are also shown. The full list of references to the original data and the details of the *R* ratio extraction from them can

Contents

Review of dark photon

- long-lived dark photon searches
- resonant decay though mixing with SM resonances

Closer look at mixing with SM resonances

- conventional computation of resonant decay
- caveat in large kinetic mixing

Closer look at conventional computation

Mass mixing basis

$$
\mathscr{L} \supset \overline{m}_V^2(V_\mu, A'_\mu) \begin{pmatrix} 1 & -\eta \\ -\eta & \delta^2 + \eta^2 \end{pmatrix} \begin{pmatrix} V^\mu \\ A^{'\mu} \end{pmatrix} \qquad \delta =
$$

 $A^{'}\mu$ $\qquad \qquad \delta = \frac{1}{\overline{m}_V}$ - ratio of mass parameter (input mass)

 $\overline{m}_{A^{'}}$

 \overline{m}_V

- effective mixing parameter ∝ *ϵ*

- one can obtain "classical" mass eigenstates by diagonalizing it

- δ=1 corresponds to mass degenerate limit (though eigenvalues split by η)

"Mass insertion" method

- using off-diagonal part as a perturbation

"Mass insertion" method

Width of dark photon

$$
\Gamma^{\rm MI}(A' \to \bar{f}f) = \frac{M_{A'} A}{16\pi \, 3} \left| \bar{g}_f^{A'} + \bar{g}_f^V \frac{-\eta \overline{m}_V^2}{M_{A'}^2 - \overline{m}_V^2 + i \overline{m}_V \overline{\Gamma}_V} \right|^2 \qquad M_{A'}^2 = \overline{m}_V^2 (\delta^2 + \eta^2)
$$

$$
\overline{\Gamma}_V = \frac{\overline{m}_V}{16\pi} \frac{4}{3} g_V^2
$$
 - decay width in the absence of dark photon

- in the mass degenerate limit, second term is resonantly large

$$
\Gamma^{\text{MI}}(A' \to \bar{f}f) \simeq \frac{M_{A'}}{16\pi} \frac{4}{3} \left(g_y^V \frac{\eta}{\overline{\Gamma}_V/\overline{m}_V} \right)^2
$$

- A' width is larger than that of V for $\,\eta>\Gamma_V/\overline{m}_V$

- the enhancement can be 10 orders of magnitude for narrow resonance like true muonium, J/ψ and Υ

- is perturbation valid?

"Classical" method

Width of dark photon

$$
\mathcal{L} \supset \overline{m}_V^2(V_\mu, A'_\mu) \begin{pmatrix} 1 & -\eta \\ -\eta & \delta^2 + \eta^2 \end{pmatrix} \begin{pmatrix} V^\mu \\ A^{'\mu} \end{pmatrix}
$$

- diagonalizing mass and compute the width at tree level

- in the mass degenerate limit, one obtains nearly (but not exactly) identical particle with half width of original SM particles at the tree level

$$
\Gamma(A' \to \bar{f}f) \simeq \Gamma(V \to \bar{f}f) \simeq \frac{m_{A'}^2}{16\pi} \frac{2}{3} g_V^2
$$

- this does not depend on mixing parameter and thus not valid at small mixing parameter

"Mass insertion" vs "Classical"

- (as demonstrated later) "mass insertion" is valid for small mixing parameter, while "classical" is valid for large

"Pole" method

Mixed propagator

- tind complex poles o here, we complete procedure, we can also prepared the previous two methods: the previous tensor $\frac{1}{2}$ - find complex poles of mixed propagator (solution of Schwinger-Dyson)
- most robust (by definition of unstable "particles") **Finost robust (by achilition or anstable particles)** - most robust (by definition of unstable "particles")

Trum muonium

Spin 1 bound states of muon-anti muon **Matsumoto, Watanabe and Watanabe, JHEP, 2023** - narrow resonance $\overline{m}_V \simeq 2 m_\mu$ **AK, Kuwahara, Matsumoto, Watanabe and Watanabe, arXiv:2404.06793** $\overline{\Gamma}_V \simeq 3.66 \times 10^{-10} \,\text{MeV}$ Comparison of three methods Mass insertion (dashed) - all agree away from 10^{-8} $\varepsilon = {10}^{-7}$ mass degenerate limit $-\mathrm{Im}\, s_{\rm pole}^{A^!},\, m_{A^!}\Gamma_{A^!}[\rm MeV]^2 \ \over \mathrm{d} \theta \, \mathrm{d} \theta \,$ 'mass insertion" is valid for $\epsilon <$ 3.2 \times 10⁻⁸ Pole (solid) while "classical" is valid $\varepsilon = {10}^{-8}$ for $\epsilon > 3.2 \times 10^{-8}$ Classical (dot dashed) - critical value $\epsilon_{\rm cr}$ 10^{-12} $\,$ corresponds to $\, \eta = \overline{\Gamma}_{\!\! |\!\! |V} / \overline{m}_{V}$ $\varepsilon = {10}^{-9}$ $1 - 10^{-10}$ $1 - 10^{-11}$ $1+10^{-11}$ $\mathbf{1}$ $\mathbf{1}$ δ δ

Trum muonium

Anti-resonance of decay width **Matsumoto, Watanabe and**

- slightly below resonance of decay width

and Watanabe, arXiv:2404.06793 - destructive interference 10^{-12} of two contributions $\Gamma^{\text{MI}}(A' \to \bar{f}f)$ 10^{-14} Mass insertion $\varepsilon = 10^{-7}$ (dashed) $-\eta \overline{m}^2$ $M_{A^{'}}$ 4 $rac{1}{\pi}$ $\frac{1}{3}$ $\left| \frac{\bar{g}_f^A + \bar{g}_f^V}{\bar{g}_f^V + \frac{1}{2} \sqrt{2} + i \bar{g}_V^V + i \bar{g}_V^V \sqrt{2}} \right|$ $\sum_{\substack{S = 10^{-1} \\ S = 10^{-1} \\ S = 10^{-18}}}$ $\frac{1}{3}$ $\left| \bar{g}_f^{A'} + \bar{g}_f^V \right|$ = *f* $M_{A^\prime}^2 - \overline{m}_V^2 + i \overline{m}_V \overline{\Gamma}_V$ 16*π* $\varepsilon = {10}^{-8}$ $\Gamma_{A^!}$ $\varepsilon = {10}^{-9}$ $\mathbf{I}\mathrm{m}\,s_{\mathrm{pole}}^{A^{\prime}},\;i$ but not "mass insertion" Pole (solid) 10^{-20} 1meridae $\simeq \Gamma_V/m_V$ 10^{-22} Classical (dot dashed) 10^{-24} $1-3.45\times{10}^{-10}$ 10^{-9} 10^{-7} 10^{-8} 10^{-6} δ ϵ

Watanabe, JHEP, 2023

AK, Kuwahara, Matsumoto, Watanabe

Summary

Critical mixing parameter **AK, Kuwahara, Matsumoto, Watanabe**

- corresponds to $\eta = \overline{\Gamma}_V/\overline{m}_V$
- as well as true monism $v^{(3770)} \left| \begin{array}{cc} 3773.7 & 27.2 \ 4040 \end{array} \right|$ - checked for ρ and Z-boson
- conventional multiplication of R-ratio for hadrons is justified for $\, \epsilon < \epsilon_{\rm cr} \,$ competition $\begin{array}{c|c|c|c|c|c|c|c|c} \hline \textbf{C} & \textbf{C} &$ **ONS IS** $\gamma (4S)$ 10579.4 20.5 1.57 × 10⁻⁵ 4.81 × 10⁻¹ produced for $\frac{1}{\gamma}$
- smaller for narrower resonance

Non-hadronic resonance

- to be added by hand
- not only resonance but also anti-resonance

Physics Beyond Colliders collaboration, J. Phys. G, 202

 $\psi(4040)$ 4039 80 1.07×10^{-5} 9.05 $\times 10^{-1}$ ψ (4160) 4191 70 6.9×10^{-6} 9.25 $\times 10^{-1}$ $\Upsilon (1S)$ 9460 5.4×10^{-2} 2.38×10^{-2} 7.64×10^{-4} $\Upsilon (2S)$ 10023 3.198×10^{-2} 1.91×10^{-2} 6.38×10^{-4} $\Upsilon (3S)$ 10355 2.032 × 10⁻² 2.18 × 10⁻² 4.68 × 10⁻⁴ $\Upsilon (4S)$ 10579.4 20.5 1.57 × 10⁻⁵ 4.81 × 10⁻¹ $\Upsilon (10860)$ 10885.2 37 8.3 $\times 10^{-6}$ 7.67 $\times 10^{-1}$ $\begin{array}{|c|c|c|c|c|}\n\hline\n\text{Y (11020)} & \text{11000} & \text{24} & \text{5.4} \times 10^{-6} & \text{7.04} \times 10^{-1} \\
\hline\n\end{array}$

Thank you

GeV dark sector

Motivations

- weak top-down reason
	- closer to electroweak scale is more natural (Higgs portal)

- with supersymmetry
$$
v' = \sqrt{\frac{\epsilon g}{g'}} v
$$

- strong bottom-up reason
	- relic abundance of heavy (> 100 TeV) stable particles overclose the Universe (Unitarity bound)
	- light (sub-GeV) dark matter evades high-energy collider experiments
		- dominating background from $Z \rightarrow \nu \bar{\nu}$
		- higher-energy hadron collider is worse
	- light (sub-GeV) dark matter evades direct-detection experiments
		- not enough recoil energy

GeV dark sector

Motivations

- strong bottom-up reason
	- multiple dark matter candidates
		- most strongly coupled one does not need to be a dominant component
		- evade late-time annihilation constraints from CMB

- this is not so trivial

XENON1T collaboration, PRL, 2019 & 2019

- e.g., electron and proton from the dark-sector point of view

- dark sector phenomenology

- in the following, dark matter = lightest stable particle in dark sector
	- lower bound of the coupling to SM from the relic abundance
	- need new experimental strategy (low background)

Geometric acceptance

Efficiency factor

 $N_{\text{signal}} \simeq N_{A'} \times \text{Br}(e^+e^-) \times \text{effic}.$

$$
\text{effic.} = \frac{1}{N_{\text{events}}} \int_{z_{\text{min}}}^{z_{\text{max}}} dz \sum_{\text{events}} \frac{m}{p_z} \Gamma e^{-z(m/p_z)\Gamma} \qquad \frac{p_z}{m} = v_z \gamma
$$
\n
$$
\text{- Lorentz boost}
$$
\n
$$
\text{- decay position}
$$

- events \in geom. is generically z and p_z dependent
	- strong dependence in Sea Quest due to KMAG
	- if weak dependence

effic.
$$
\approx \mathcal{A} \frac{1}{N_{\text{events}}}
$$
 $\sum_{\text{events}} (e^{-z_{\min}(m/p_z)\Gamma} - e^{-z_{\max}(m/p_z)\Gamma})$

- geometrical acceptance

Geometric acceptance

Kinematics@SeaQuest

 $A' \rightarrow e^+e^-$

- $-A'$ from Bremsstrahlung is more energetic
	- γ takes away energy (smaller impact for heavier A')

 $A' \rightarrow e^+e^$ $m_{A'} = 0.01 \text{ GeV}$ $m_{A'} = 0.5 \text{ GeV}$ 10^{5} Arbitrary Units Arbitrary Units $\eta \rightarrow \gamma_{A'}$ 10^{4} detector Bren. 10^{3} 10^2 0.5

 $|\sin \theta_e|$

- A' from Bremsstrahlung **Canada A**' from Bremsstrahlung is more boosted
	- *•* lower collimation for heavier

Geometric acceptance

Electron beam dump

SLAC E137

